Loading…
Design of terahertz band-stop filter based on a metallic resonator on high-resistivity silicon wafer
In this paper, we present a terahertz (THz) band-stop filter realized by fabricating a metallic T-shaped resonator pattern on the high-resistivity silicon wafer. The filter exhibits two typical band-stop response characteristics depending on the incident di- rection of electric field with respect to...
Saved in:
Published in: | Science China. Technological sciences 2013-09, Vol.56 (9), p.2238-2242 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a terahertz (THz) band-stop filter realized by fabricating a metallic T-shaped resonator pattern on the high-resistivity silicon wafer. The filter exhibits two typical band-stop response characteristics depending on the incident di- rection of electric field with respect to the T-shaped resonator. When the long and the short arms of the T-shaped resonator were electrically polarized by changing the incident THz wave transmission directions, the corresponding central frequencies of the band-stop filter were found to be 0.436 THz at -42dB and 0.610 THz at -28 dB, respectively. Using three-dimensional (3D) finite-integral time-domain simulations, the band-stop filter was designed, which can operate in the wavelength between 0.2 and 0.8 THz. Experimental verification was also performed using a free space THz time-domain spectroscopy system. The band-stop response characteristics are in good agreement with the simulation results. The interesting THz band-stop filtering properties suggest a promising application in the modern THz communication systems, THz time-domain spectroscopic imag- ing and THz continuous wave imaging. |
---|---|
ISSN: | 1674-7321 1869-1900 |
DOI: | 10.1007/s11431-013-5289-z |