Loading…
Interface dipole engineering in metal gate/high-k stacks
Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond, there are still many challenges to be solved. Among the various technologies to tackle these problems, interface dipole engineering (IDE) is an...
Saved in:
Published in: | Chinese science bulletin 2012, Vol.57 (22), p.2872-2878 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond, there are still many challenges to be solved. Among the various technologies to tackle these problems, interface dipole engineering (IDE) is an effective method to improve the performance, particularly, modulating the effective work function (EWF) of metal gates. Because of the different electronegativity of the various atoms in the interfacial layer, a dipole layer with an electric filed can be formed altering the band alignment in the MOS stack. This paper reviews the interface dipole formation induced by different elements, recent progresses in metal gate/high-k MOS stacks with IDE on EWF modulation, and mechanism of IDE. |
---|---|
ISSN: | 1001-6538 1861-9541 |
DOI: | 10.1007/s11434-012-5289-6 |