Loading…

On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity

This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of Mathematics 2024-05, Vol.19 (3), p.435-455
Main Authors: Mi, Yongsheng, Guo, Boling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3
container_end_page 455
container_issue 3
container_start_page 435
container_title Frontiers of Mathematics
container_volume 19
creator Mi, Yongsheng
Guo, Boling
description This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.
doi_str_mv 10.1007/s11464-021-0319-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11464_021_0319_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046730845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfzTrOU4gvGjqCuQ9qmtkOnGZOWMv_ejhVdubqXyznnHj4ALgm-Jhirm0gIlxxhShBmRCN9AhZUMYISKeTp786Tc7CKcYsxphpTLMkCZJsO9rWDqR2K-gBfgs9bt4OVD9_nzI3wtbZt60c02t4F-OxL10Y4Nn0N0yFvCpj5rm06Z0PTHy7AWWXb6FY_cwne7-_e0ke03jw8pbdrVFCZ9IiVrCCKKyYTkmsnpNDlVI-4nFFhVVlJJYR2WpdJkXBLpXZYCixVSUqdc8eW4GrO3Qf_ObjYm60fQje9NAxzqRhOuJhUZFYVwccYXGX2odnZcDAEmyM5M5MzEzlzJGf05KGzJ07a7sOFv-T_TV8yw26Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046730845</pqid></control><display><type>article</type><title>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</title><source>Springer Nature</source><creator>Mi, Yongsheng ; Guo, Boling</creator><creatorcontrib>Mi, Yongsheng ; Guo, Boling</creatorcontrib><description>This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.</description><identifier>ISSN: 2731-8648</identifier><identifier>ISSN: 1673-3452</identifier><identifier>EISSN: 2731-8656</identifier><identifier>EISSN: 1673-3576</identifier><identifier>DOI: 10.1007/s11464-021-0319-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cauchy problems ; Existence theorems ; Fluid dynamics ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Physical simulation ; Research Article ; Shallow water ; Sobolev space ; Solitary waves ; Uniqueness theorems</subject><ispartof>Frontiers of Mathematics, 2024-05, Vol.19 (3), p.435-455</ispartof><rights>Peking University 2024</rights><rights>Peking University 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mi, Yongsheng</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><title>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</title><title>Frontiers of Mathematics</title><addtitle>Front. Math</addtitle><description>This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.</description><subject>Cauchy problems</subject><subject>Existence theorems</subject><subject>Fluid dynamics</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Physical simulation</subject><subject>Research Article</subject><subject>Shallow water</subject><subject>Sobolev space</subject><subject>Solitary waves</subject><subject>Uniqueness theorems</subject><issn>2731-8648</issn><issn>1673-3452</issn><issn>2731-8656</issn><issn>1673-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfzTrOU4gvGjqCuQ9qmtkOnGZOWMv_ejhVdubqXyznnHj4ALgm-Jhirm0gIlxxhShBmRCN9AhZUMYISKeTp786Tc7CKcYsxphpTLMkCZJsO9rWDqR2K-gBfgs9bt4OVD9_nzI3wtbZt60c02t4F-OxL10Y4Nn0N0yFvCpj5rm06Z0PTHy7AWWXb6FY_cwne7-_e0ke03jw8pbdrVFCZ9IiVrCCKKyYTkmsnpNDlVI-4nFFhVVlJJYR2WpdJkXBLpXZYCixVSUqdc8eW4GrO3Qf_ObjYm60fQje9NAxzqRhOuJhUZFYVwccYXGX2odnZcDAEmyM5M5MzEzlzJGf05KGzJ07a7sOFv-T_TV8yw26Z</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mi, Yongsheng</creator><creator>Guo, Boling</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240501</creationdate><title>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</title><author>Mi, Yongsheng ; Guo, Boling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Existence theorems</topic><topic>Fluid dynamics</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Physical simulation</topic><topic>Research Article</topic><topic>Shallow water</topic><topic>Sobolev space</topic><topic>Solitary waves</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Yongsheng</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Frontiers of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Yongsheng</au><au>Guo, Boling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</atitle><jtitle>Frontiers of Mathematics</jtitle><stitle>Front. Math</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>435</spage><epage>455</epage><pages>435-455</pages><issn>2731-8648</issn><issn>1673-3452</issn><eissn>2731-8656</eissn><eissn>1673-3576</eissn><abstract>This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11464-021-0319-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2731-8648
ispartof Frontiers of Mathematics, 2024-05, Vol.19 (3), p.435-455
issn 2731-8648
1673-3452
2731-8656
1673-3576
language eng
recordid cdi_crossref_primary_10_1007_s11464_021_0319_9
source Springer Nature
subjects Cauchy problems
Existence theorems
Fluid dynamics
Lower bounds
Mathematics
Mathematics and Statistics
Nonlinearity
Physical simulation
Research Article
Shallow water
Sobolev space
Solitary waves
Uniqueness theorems
title On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Cauchy%20Problem%20for%20the%20New%20Shallow-water%20Models%20with%20Cubic%20Nonlinearity&rft.jtitle=Frontiers%20of%20Mathematics&rft.au=Mi,%20Yongsheng&rft.date=2024-05-01&rft.volume=19&rft.issue=3&rft.spage=435&rft.epage=455&rft.pages=435-455&rft.issn=2731-8648&rft.eissn=2731-8656&rft_id=info:doi/10.1007/s11464-021-0319-9&rft_dat=%3Cproquest_cross%3E3046730845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046730845&rft_id=info:pmid/&rfr_iscdi=true