Loading…
On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity
This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the...
Saved in:
Published in: | Frontiers of Mathematics 2024-05, Vol.19 (3), p.435-455 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3 |
container_end_page | 455 |
container_issue | 3 |
container_start_page | 435 |
container_title | Frontiers of Mathematics |
container_volume | 19 |
creator | Mi, Yongsheng Guo, Boling |
description | This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition. |
doi_str_mv | 10.1007/s11464-021-0319-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11464_021_0319_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046730845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfzTrOU4gvGjqCuQ9qmtkOnGZOWMv_ejhVdubqXyznnHj4ALgm-Jhirm0gIlxxhShBmRCN9AhZUMYISKeTp786Tc7CKcYsxphpTLMkCZJsO9rWDqR2K-gBfgs9bt4OVD9_nzI3wtbZt60c02t4F-OxL10Y4Nn0N0yFvCpj5rm06Z0PTHy7AWWXb6FY_cwne7-_e0ke03jw8pbdrVFCZ9IiVrCCKKyYTkmsnpNDlVI-4nFFhVVlJJYR2WpdJkXBLpXZYCixVSUqdc8eW4GrO3Qf_ObjYm60fQje9NAxzqRhOuJhUZFYVwccYXGX2odnZcDAEmyM5M5MzEzlzJGf05KGzJ07a7sOFv-T_TV8yw26Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046730845</pqid></control><display><type>article</type><title>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</title><source>Springer Nature</source><creator>Mi, Yongsheng ; Guo, Boling</creator><creatorcontrib>Mi, Yongsheng ; Guo, Boling</creatorcontrib><description>This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.</description><identifier>ISSN: 2731-8648</identifier><identifier>ISSN: 1673-3452</identifier><identifier>EISSN: 2731-8656</identifier><identifier>EISSN: 1673-3576</identifier><identifier>DOI: 10.1007/s11464-021-0319-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cauchy problems ; Existence theorems ; Fluid dynamics ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Physical simulation ; Research Article ; Shallow water ; Sobolev space ; Solitary waves ; Uniqueness theorems</subject><ispartof>Frontiers of Mathematics, 2024-05, Vol.19 (3), p.435-455</ispartof><rights>Peking University 2024</rights><rights>Peking University 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mi, Yongsheng</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><title>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</title><title>Frontiers of Mathematics</title><addtitle>Front. Math</addtitle><description>This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.</description><subject>Cauchy problems</subject><subject>Existence theorems</subject><subject>Fluid dynamics</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Physical simulation</subject><subject>Research Article</subject><subject>Shallow water</subject><subject>Sobolev space</subject><subject>Solitary waves</subject><subject>Uniqueness theorems</subject><issn>2731-8648</issn><issn>1673-3452</issn><issn>2731-8656</issn><issn>1673-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXEfzTrOU4gvGjqCuQ9qmtkOnGZOWMv_ejhVdubqXyznnHj4ALgm-Jhirm0gIlxxhShBmRCN9AhZUMYISKeTp786Tc7CKcYsxphpTLMkCZJsO9rWDqR2K-gBfgs9bt4OVD9_nzI3wtbZt60c02t4F-OxL10Y4Nn0N0yFvCpj5rm06Z0PTHy7AWWXb6FY_cwne7-_e0ke03jw8pbdrVFCZ9IiVrCCKKyYTkmsnpNDlVI-4nFFhVVlJJYR2WpdJkXBLpXZYCixVSUqdc8eW4GrO3Qf_ObjYm60fQje9NAxzqRhOuJhUZFYVwccYXGX2odnZcDAEmyM5M5MzEzlzJGf05KGzJ07a7sOFv-T_TV8yw26Z</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mi, Yongsheng</creator><creator>Guo, Boling</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240501</creationdate><title>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</title><author>Mi, Yongsheng ; Guo, Boling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Existence theorems</topic><topic>Fluid dynamics</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Physical simulation</topic><topic>Research Article</topic><topic>Shallow water</topic><topic>Sobolev space</topic><topic>Solitary waves</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Yongsheng</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Frontiers of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Yongsheng</au><au>Guo, Boling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity</atitle><jtitle>Frontiers of Mathematics</jtitle><stitle>Front. Math</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>435</spage><epage>455</epage><pages>435-455</pages><issn>2731-8648</issn><issn>1673-3452</issn><eissn>2731-8656</eissn><eissn>1673-3576</eissn><abstract>This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11464-021-0319-9</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-8648 |
ispartof | Frontiers of Mathematics, 2024-05, Vol.19 (3), p.435-455 |
issn | 2731-8648 1673-3452 2731-8656 1673-3576 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11464_021_0319_9 |
source | Springer Nature |
subjects | Cauchy problems Existence theorems Fluid dynamics Lower bounds Mathematics Mathematics and Statistics Nonlinearity Physical simulation Research Article Shallow water Sobolev space Solitary waves Uniqueness theorems |
title | On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Cauchy%20Problem%20for%20the%20New%20Shallow-water%20Models%20with%20Cubic%20Nonlinearity&rft.jtitle=Frontiers%20of%20Mathematics&rft.au=Mi,%20Yongsheng&rft.date=2024-05-01&rft.volume=19&rft.issue=3&rft.spage=435&rft.epage=455&rft.pages=435-455&rft.issn=2731-8648&rft.eissn=2731-8656&rft_id=info:doi/10.1007/s11464-021-0319-9&rft_dat=%3Cproquest_cross%3E3046730845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-3d3c17473681b9e5659d6481eb325a7df67559e99d8c84a269e065067d1d9b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046730845&rft_id=info:pmid/&rfr_iscdi=true |