Loading…
Hom-Lie Algebras with Derivations
In this paper, we first introduce the notion of an HLieDer triple, which includes a Hom-Lie algebra and a derivation. We define a cohomology theory for HLieDer triples with coefficients in a representation. We study central extensions of an HLieDer triple. Finally, we consider homotopy derivations o...
Saved in:
Published in: | Frontiers of Mathematics 2024-05, Vol.19 (3), p.535-550 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-ca40424d04d151330dcdbd70178f1a66561c4bef16bd140e54acaca21b7aff463 |
container_end_page | 550 |
container_issue | 3 |
container_start_page | 535 |
container_title | Frontiers of Mathematics |
container_volume | 19 |
creator | Li, Yizheng Wang, Dingguo |
description | In this paper, we first introduce the notion of an HLieDer triple, which includes a Hom-Lie algebra and a derivation. We define a cohomology theory for HLieDer triples with coefficients in a representation. We study central extensions of an HLieDer triple. Finally, we consider homotopy derivations on HLieb
∞
algebras and 2-derivations on Hom-Lie 2-algebras, and we prove that the category of 2-term HLieb
∞
algebras with homotopy derivations and the category of Hom-Lie 2-algebras with 2-derivations are equivalent. |
doi_str_mv | 10.1007/s11464-022-0131-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11464_022_0131_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046730772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ca40424d04d151330dcdbd70178f1a66561c4bef16bd140e54acaca21b7aff463</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXpA3AL4mzYtR07HKsCLVIkLnC2HP-UVG1S7BTE2-MqCE5oDzuHmdnVR8glwg0CqNuEKKSgwBgF5EjxhEyYyqKSpTz91aI6J7OUNgDA7oCBxAm5WvU7Wre-mG_XvokmFZ_t8Fbc-9h-mKHtu3RBzoLZJj_72VPy-vjwsljR-nn5tJjX1DJZDdQaAYIJB8JhiZyDs65xClBVAY3Mj6AVjQ8oG4cCfCmMzcOwUSYEIfmUXI-9-9i_H3wa9KY_xC6f1ByEVByUYtmFo8vGPqXog97Hdmfil0bQRxh6hKEzDH2EoTFn2JhJ2dutffxr_j_0DURkXyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046730772</pqid></control><display><type>article</type><title>Hom-Lie Algebras with Derivations</title><source>Springer Link</source><creator>Li, Yizheng ; Wang, Dingguo</creator><creatorcontrib>Li, Yizheng ; Wang, Dingguo</creatorcontrib><description>In this paper, we first introduce the notion of an HLieDer triple, which includes a Hom-Lie algebra and a derivation. We define a cohomology theory for HLieDer triples with coefficients in a representation. We study central extensions of an HLieDer triple. Finally, we consider homotopy derivations on HLieb
∞
algebras and 2-derivations on Hom-Lie 2-algebras, and we prove that the category of 2-term HLieb
∞
algebras with homotopy derivations and the category of Hom-Lie 2-algebras with 2-derivations are equivalent.</description><identifier>ISSN: 2731-8648</identifier><identifier>ISSN: 1673-3452</identifier><identifier>EISSN: 2731-8656</identifier><identifier>EISSN: 1673-3576</identifier><identifier>DOI: 10.1007/s11464-022-0131-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Derivation ; Homology ; Lie groups ; Mathematics ; Mathematics and Statistics ; Research Article</subject><ispartof>Frontiers of Mathematics, 2024-05, Vol.19 (3), p.535-550</ispartof><rights>Peking University 2024</rights><rights>Peking University 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ca40424d04d151330dcdbd70178f1a66561c4bef16bd140e54acaca21b7aff463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yizheng</creatorcontrib><creatorcontrib>Wang, Dingguo</creatorcontrib><title>Hom-Lie Algebras with Derivations</title><title>Frontiers of Mathematics</title><addtitle>Front. Math</addtitle><description>In this paper, we first introduce the notion of an HLieDer triple, which includes a Hom-Lie algebra and a derivation. We define a cohomology theory for HLieDer triples with coefficients in a representation. We study central extensions of an HLieDer triple. Finally, we consider homotopy derivations on HLieb
∞
algebras and 2-derivations on Hom-Lie 2-algebras, and we prove that the category of 2-term HLieb
∞
algebras with homotopy derivations and the category of Hom-Lie 2-algebras with 2-derivations are equivalent.</description><subject>Algebra</subject><subject>Derivation</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><issn>2731-8648</issn><issn>1673-3452</issn><issn>2731-8656</issn><issn>1673-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXpA3AL4mzYtR07HKsCLVIkLnC2HP-UVG1S7BTE2-MqCE5oDzuHmdnVR8glwg0CqNuEKKSgwBgF5EjxhEyYyqKSpTz91aI6J7OUNgDA7oCBxAm5WvU7Wre-mG_XvokmFZ_t8Fbc-9h-mKHtu3RBzoLZJj_72VPy-vjwsljR-nn5tJjX1DJZDdQaAYIJB8JhiZyDs65xClBVAY3Mj6AVjQ8oG4cCfCmMzcOwUSYEIfmUXI-9-9i_H3wa9KY_xC6f1ByEVByUYtmFo8vGPqXog97Hdmfil0bQRxh6hKEzDH2EoTFn2JhJ2dutffxr_j_0DURkXyQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Yizheng</creator><creator>Wang, Dingguo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240501</creationdate><title>Hom-Lie Algebras with Derivations</title><author>Li, Yizheng ; Wang, Dingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ca40424d04d151330dcdbd70178f1a66561c4bef16bd140e54acaca21b7aff463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Derivation</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yizheng</creatorcontrib><creatorcontrib>Wang, Dingguo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Frontiers of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yizheng</au><au>Wang, Dingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hom-Lie Algebras with Derivations</atitle><jtitle>Frontiers of Mathematics</jtitle><stitle>Front. Math</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>535</spage><epage>550</epage><pages>535-550</pages><issn>2731-8648</issn><issn>1673-3452</issn><eissn>2731-8656</eissn><eissn>1673-3576</eissn><abstract>In this paper, we first introduce the notion of an HLieDer triple, which includes a Hom-Lie algebra and a derivation. We define a cohomology theory for HLieDer triples with coefficients in a representation. We study central extensions of an HLieDer triple. Finally, we consider homotopy derivations on HLieb
∞
algebras and 2-derivations on Hom-Lie 2-algebras, and we prove that the category of 2-term HLieb
∞
algebras with homotopy derivations and the category of Hom-Lie 2-algebras with 2-derivations are equivalent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11464-022-0131-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-8648 |
ispartof | Frontiers of Mathematics, 2024-05, Vol.19 (3), p.535-550 |
issn | 2731-8648 1673-3452 2731-8656 1673-3576 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11464_022_0131_1 |
source | Springer Link |
subjects | Algebra Derivation Homology Lie groups Mathematics Mathematics and Statistics Research Article |
title | Hom-Lie Algebras with Derivations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hom-Lie%20Algebras%20with%20Derivations&rft.jtitle=Frontiers%20of%20Mathematics&rft.au=Li,%20Yizheng&rft.date=2024-05-01&rft.volume=19&rft.issue=3&rft.spage=535&rft.epage=550&rft.pages=535-550&rft.issn=2731-8648&rft.eissn=2731-8656&rft_id=info:doi/10.1007/s11464-022-0131-1&rft_dat=%3Cproquest_cross%3E3046730772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-ca40424d04d151330dcdbd70178f1a66561c4bef16bd140e54acaca21b7aff463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046730772&rft_id=info:pmid/&rfr_iscdi=true |