Loading…

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization me...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of Mechanical Engineering 2019-06, Vol.14 (2), p.141-152
Main Authors: CHAN, Yu-Chin, SHINTANI, Kohei, CHEN, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3
cites cdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3
container_end_page 152
container_issue 2
container_start_page 141
container_title Frontiers of Mechanical Engineering
container_volume 14
creator CHAN, Yu-Chin
SHINTANI, Kohei
CHEN, Wei
description Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.
doi_str_mv 10.1007/s11465-019-0531-4
format article
fullrecord <record><control><sourceid>higheredpress_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11465_019_0531_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1007/s11465-019-0531-4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</originalsourceid><addsrcrecordid>eNp9kMlqwzAQhkVpoSHNA_SmF3A72rwcS-gGgUJpz0LW4ijYlpHkQ_r0dUjJsacZhv8bZj6E7gk8EIDqMRHCS1EAaQoQjBT8Cq0oNMuEcnJ96Rm7RZuUDgBAgQpB2Qp1n6GdU8Y5TKEP3RGHKfvB_6jsw4iDw8PcZ18MKtvoVY97lbPXFqccZ53naBOeR2MjviTUaHAflFnm2sas_Ji9TXfoxqk-2c1fXaPvl-ev7Vux-3h93z7tCs15mQvjRGsMJTW0UKm2VKKpKs3a2ujKAdVgm5oJCq1mTjQlWODEkNJwXdPSEcPWiJz36hhSitbJKfpBxaMkIE-y5FmWXGTJkyzJF4aembRkx85GeQhzHJcz_4XqM7T33d5Ga6bFRZIuhtO_8T_0F3NfgYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust topology optimization of multi-material lattice structures under material and load uncertainties</title><source>Springer Nature</source><creator>CHAN, Yu-Chin ; SHINTANI, Kohei ; CHEN, Wei</creator><creatorcontrib>CHAN, Yu-Chin ; SHINTANI, Kohei ; CHEN, Wei</creatorcontrib><description>Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.</description><identifier>ISSN: 2095-0233</identifier><identifier>EISSN: 2095-0241</identifier><identifier>DOI: 10.1007/s11465-019-0531-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Engineering ; lattice structures ; load uncertainty ; material uncertainty ; Mechanical Engineering ; multi-material ; Research Article ; robust topology optimization ; Structural Topology Optimization ; univariate dimension reduction</subject><ispartof>Frontiers of Mechanical Engineering, 2019-06, Vol.14 (2), p.141-152</ispartof><rights>Copyright reserved, 2019, The Author(s) 2019. This article is published with open access at link.springer.com and journal.hep.com.cn</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</citedby><cites>FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>CHAN, Yu-Chin</creatorcontrib><creatorcontrib>SHINTANI, Kohei</creatorcontrib><creatorcontrib>CHEN, Wei</creatorcontrib><title>Robust topology optimization of multi-material lattice structures under material and load uncertainties</title><title>Frontiers of Mechanical Engineering</title><addtitle>Front. Mech. Eng</addtitle><description>Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.</description><subject>Engineering</subject><subject>lattice structures</subject><subject>load uncertainty</subject><subject>material uncertainty</subject><subject>Mechanical Engineering</subject><subject>multi-material</subject><subject>Research Article</subject><subject>robust topology optimization</subject><subject>Structural Topology Optimization</subject><subject>univariate dimension reduction</subject><issn>2095-0233</issn><issn>2095-0241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMlqwzAQhkVpoSHNA_SmF3A72rwcS-gGgUJpz0LW4ijYlpHkQ_r0dUjJsacZhv8bZj6E7gk8EIDqMRHCS1EAaQoQjBT8Cq0oNMuEcnJ96Rm7RZuUDgBAgQpB2Qp1n6GdU8Y5TKEP3RGHKfvB_6jsw4iDw8PcZ18MKtvoVY97lbPXFqccZ53naBOeR2MjviTUaHAflFnm2sas_Ji9TXfoxqk-2c1fXaPvl-ev7Vux-3h93z7tCs15mQvjRGsMJTW0UKm2VKKpKs3a2ujKAdVgm5oJCq1mTjQlWODEkNJwXdPSEcPWiJz36hhSitbJKfpBxaMkIE-y5FmWXGTJkyzJF4aembRkx85GeQhzHJcz_4XqM7T33d5Ga6bFRZIuhtO_8T_0F3NfgYU</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>CHAN, Yu-Chin</creator><creator>SHINTANI, Kohei</creator><creator>CHEN, Wei</creator><general>Higher Education Press</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Robust topology optimization of multi-material lattice structures under material and load uncertainties</title><author>CHAN, Yu-Chin ; SHINTANI, Kohei ; CHEN, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>lattice structures</topic><topic>load uncertainty</topic><topic>material uncertainty</topic><topic>Mechanical Engineering</topic><topic>multi-material</topic><topic>Research Article</topic><topic>robust topology optimization</topic><topic>Structural Topology Optimization</topic><topic>univariate dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAN, Yu-Chin</creatorcontrib><creatorcontrib>SHINTANI, Kohei</creatorcontrib><creatorcontrib>CHEN, Wei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Frontiers of Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAN, Yu-Chin</au><au>SHINTANI, Kohei</au><au>CHEN, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust topology optimization of multi-material lattice structures under material and load uncertainties</atitle><jtitle>Frontiers of Mechanical Engineering</jtitle><stitle>Front. Mech. Eng</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>141</spage><epage>152</epage><pages>141-152</pages><issn>2095-0233</issn><eissn>2095-0241</eissn><abstract>Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11465-019-0531-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-0233
ispartof Frontiers of Mechanical Engineering, 2019-06, Vol.14 (2), p.141-152
issn 2095-0233
2095-0241
language eng
recordid cdi_crossref_primary_10_1007_s11465_019_0531_4
source Springer Nature
subjects Engineering
lattice structures
load uncertainty
material uncertainty
Mechanical Engineering
multi-material
Research Article
robust topology optimization
Structural Topology Optimization
univariate dimension reduction
title Robust topology optimization of multi-material lattice structures under material and load uncertainties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-higheredpress_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20topology%20optimization%20of%20multi-material%20lattice%20structures%20under%20material%20and%20load%20uncertainties&rft.jtitle=Frontiers%20of%20Mechanical%20Engineering&rft.au=CHAN,%20Yu-Chin&rft.date=2019-06-01&rft.volume=14&rft.issue=2&rft.spage=141&rft.epage=152&rft.pages=141-152&rft.issn=2095-0233&rft.eissn=2095-0241&rft_id=info:doi/10.1007/s11465-019-0531-4&rft_dat=%3Chigheredpress_cross%3E10.1007/s11465-019-0531-4%3C/higheredpress_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true