Loading…
Robust topology optimization of multi-material lattice structures under material and load uncertainties
Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization me...
Saved in:
Published in: | Frontiers of Mechanical Engineering 2019-06, Vol.14 (2), p.141-152 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3 |
container_end_page | 152 |
container_issue | 2 |
container_start_page | 141 |
container_title | Frontiers of Mechanical Engineering |
container_volume | 14 |
creator | CHAN, Yu-Chin SHINTANI, Kohei CHEN, Wei |
description | Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach. |
doi_str_mv | 10.1007/s11465-019-0531-4 |
format | article |
fullrecord | <record><control><sourceid>higheredpress_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11465_019_0531_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1007/s11465-019-0531-4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</originalsourceid><addsrcrecordid>eNp9kMlqwzAQhkVpoSHNA_SmF3A72rwcS-gGgUJpz0LW4ijYlpHkQ_r0dUjJsacZhv8bZj6E7gk8EIDqMRHCS1EAaQoQjBT8Cq0oNMuEcnJ96Rm7RZuUDgBAgQpB2Qp1n6GdU8Y5TKEP3RGHKfvB_6jsw4iDw8PcZ18MKtvoVY97lbPXFqccZ53naBOeR2MjviTUaHAflFnm2sas_Ji9TXfoxqk-2c1fXaPvl-ev7Vux-3h93z7tCs15mQvjRGsMJTW0UKm2VKKpKs3a2ujKAdVgm5oJCq1mTjQlWODEkNJwXdPSEcPWiJz36hhSitbJKfpBxaMkIE-y5FmWXGTJkyzJF4aembRkx85GeQhzHJcz_4XqM7T33d5Ga6bFRZIuhtO_8T_0F3NfgYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust topology optimization of multi-material lattice structures under material and load uncertainties</title><source>Springer Nature</source><creator>CHAN, Yu-Chin ; SHINTANI, Kohei ; CHEN, Wei</creator><creatorcontrib>CHAN, Yu-Chin ; SHINTANI, Kohei ; CHEN, Wei</creatorcontrib><description>Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.</description><identifier>ISSN: 2095-0233</identifier><identifier>EISSN: 2095-0241</identifier><identifier>DOI: 10.1007/s11465-019-0531-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Engineering ; lattice structures ; load uncertainty ; material uncertainty ; Mechanical Engineering ; multi-material ; Research Article ; robust topology optimization ; Structural Topology Optimization ; univariate dimension reduction</subject><ispartof>Frontiers of Mechanical Engineering, 2019-06, Vol.14 (2), p.141-152</ispartof><rights>Copyright reserved, 2019, The Author(s) 2019. This article is published with open access at link.springer.com and journal.hep.com.cn</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</citedby><cites>FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>CHAN, Yu-Chin</creatorcontrib><creatorcontrib>SHINTANI, Kohei</creatorcontrib><creatorcontrib>CHEN, Wei</creatorcontrib><title>Robust topology optimization of multi-material lattice structures under material and load uncertainties</title><title>Frontiers of Mechanical Engineering</title><addtitle>Front. Mech. Eng</addtitle><description>Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.</description><subject>Engineering</subject><subject>lattice structures</subject><subject>load uncertainty</subject><subject>material uncertainty</subject><subject>Mechanical Engineering</subject><subject>multi-material</subject><subject>Research Article</subject><subject>robust topology optimization</subject><subject>Structural Topology Optimization</subject><subject>univariate dimension reduction</subject><issn>2095-0233</issn><issn>2095-0241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMlqwzAQhkVpoSHNA_SmF3A72rwcS-gGgUJpz0LW4ijYlpHkQ_r0dUjJsacZhv8bZj6E7gk8EIDqMRHCS1EAaQoQjBT8Cq0oNMuEcnJ96Rm7RZuUDgBAgQpB2Qp1n6GdU8Y5TKEP3RGHKfvB_6jsw4iDw8PcZ18MKtvoVY97lbPXFqccZ53naBOeR2MjviTUaHAflFnm2sas_Ji9TXfoxqk-2c1fXaPvl-ev7Vux-3h93z7tCs15mQvjRGsMJTW0UKm2VKKpKs3a2ujKAdVgm5oJCq1mTjQlWODEkNJwXdPSEcPWiJz36hhSitbJKfpBxaMkIE-y5FmWXGTJkyzJF4aembRkx85GeQhzHJcz_4XqM7T33d5Ga6bFRZIuhtO_8T_0F3NfgYU</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>CHAN, Yu-Chin</creator><creator>SHINTANI, Kohei</creator><creator>CHEN, Wei</creator><general>Higher Education Press</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Robust topology optimization of multi-material lattice structures under material and load uncertainties</title><author>CHAN, Yu-Chin ; SHINTANI, Kohei ; CHEN, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>lattice structures</topic><topic>load uncertainty</topic><topic>material uncertainty</topic><topic>Mechanical Engineering</topic><topic>multi-material</topic><topic>Research Article</topic><topic>robust topology optimization</topic><topic>Structural Topology Optimization</topic><topic>univariate dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAN, Yu-Chin</creatorcontrib><creatorcontrib>SHINTANI, Kohei</creatorcontrib><creatorcontrib>CHEN, Wei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Frontiers of Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAN, Yu-Chin</au><au>SHINTANI, Kohei</au><au>CHEN, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust topology optimization of multi-material lattice structures under material and load uncertainties</atitle><jtitle>Frontiers of Mechanical Engineering</jtitle><stitle>Front. Mech. Eng</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>141</spage><epage>152</epage><pages>141-152</pages><issn>2095-0233</issn><eissn>2095-0241</eissn><abstract>Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11465-019-0531-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-0233 |
ispartof | Frontiers of Mechanical Engineering, 2019-06, Vol.14 (2), p.141-152 |
issn | 2095-0233 2095-0241 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11465_019_0531_4 |
source | Springer Nature |
subjects | Engineering lattice structures load uncertainty material uncertainty Mechanical Engineering multi-material Research Article robust topology optimization Structural Topology Optimization univariate dimension reduction |
title | Robust topology optimization of multi-material lattice structures under material and load uncertainties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-higheredpress_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20topology%20optimization%20of%20multi-material%20lattice%20structures%20under%20material%20and%20load%20uncertainties&rft.jtitle=Frontiers%20of%20Mechanical%20Engineering&rft.au=CHAN,%20Yu-Chin&rft.date=2019-06-01&rft.volume=14&rft.issue=2&rft.spage=141&rft.epage=152&rft.pages=141-152&rft.issn=2095-0233&rft.eissn=2095-0241&rft_id=info:doi/10.1007/s11465-019-0531-4&rft_dat=%3Chigheredpress_cross%3E10.1007/s11465-019-0531-4%3C/higheredpress_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-df5bdd2180b07ab6a5977c3b8dc7f02c0e983520bc3f5960e041d16d4c826f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |