Loading…
Variational optic flow on the Sony PlayStation 3: Accurate dense flow fields for real-time applications
While modern variational methods for optic flow computation offer dense flow fields and highly accurate results, their computational complexity has prevented their use in many real-time applications. With cheap modern parallel hardware such as the Cell Processor of the Sony PlayStation 3, new possib...
Saved in:
Published in: | Journal of real-time image processing 2010-09, Vol.5 (3), p.163-177 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While modern variational methods for optic flow computation offer dense flow fields and highly accurate results, their computational complexity has prevented their use in many real-time applications. With cheap modern parallel hardware such as the Cell Processor of the Sony PlayStation 3, new possibilities arise. For a linear and a nonlinear variant of the popular combined local-global method, we present specific algorithms on this architecture that are tailored towards real-time performance. They are based on bidirectional full multigrid methods with a full approximation scheme in the nonlinear setting. Their parallel design on the Cell hardware uses a temporal instead of a spatial decomposition, and processes operations in a vector-based manner. Memory latencies are reduced by a locality-preserving cache management and optimised access patterns. For images of size 316 × 252 pixels, we obtain dense flow fields for up to 210 frames per second. |
---|---|
ISSN: | 1861-8200 1861-8219 |
DOI: | 10.1007/s11554-009-0132-2 |