Loading…
Complex solutions to the higher-order nonlinear boussinesq type wave equation transform
The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions...
Saved in:
Published in: | Ricerche di matematica 2024-09, Vol.73 (4), p.1793-1800 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3 |
container_end_page | 1800 |
container_issue | 4 |
container_start_page | 1793 |
container_title | Ricerche di matematica |
container_volume | 73 |
creator | Kiliç, S. Ş. Ş. Çelik, E. |
description | The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the
m
+
1
G
′
-expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics. |
doi_str_mv | 10.1007/s11587-022-00698-1 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11587_022_00698_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11587_022_00698_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6z8A4YZO46TJap4SZXYgFhaTjJpU6V2aydA_56UsmY1o9Gcq6vD2A3CLQKYu4SoCyNASgGQl4XAEzbDQhqhshJP2QxAaaFBFefsIqU1QGY0ZDP2MQ-bbU_fPIV-HLrgEx8CH1bEV91yRVGE2FDkPvi-8-Qir8KY0rSmHR_2W-Jf7pM47UZ3gPkQnU9tiJsrdta6PtH137xk748Pb_NnsXh9epnfL0QtSxxEVjW5gwZLNKaqpKtLVRNJ43SGTrXKYIEgQeeKGqmwyKeTaTVUTV2jrip1yeQxt44hpUit3cZu4-LeItiDGntUYyc19leNxQlSRyhNz35J0a7DGP3U8z_qB0r4aOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</title><source>Springer Nature</source><creator>Kiliç, S. Ş. Ş. ; Çelik, E.</creator><creatorcontrib>Kiliç, S. Ş. Ş. ; Çelik, E.</creatorcontrib><description>The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the
m
+
1
G
′
-expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-022-00698-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes</subject><ispartof>Ricerche di matematica, 2024-09, Vol.73 (4), p.1793-1800</ispartof><rights>Università degli Studi di Napoli "Federico II" 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</citedby><cites>FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</cites><orcidid>0000-0002-1402-1457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kiliç, S. Ş. Ş.</creatorcontrib><creatorcontrib>Çelik, E.</creatorcontrib><title>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the
m
+
1
G
′
-expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6z8A4YZO46TJap4SZXYgFhaTjJpU6V2aydA_56UsmY1o9Gcq6vD2A3CLQKYu4SoCyNASgGQl4XAEzbDQhqhshJP2QxAaaFBFefsIqU1QGY0ZDP2MQ-bbU_fPIV-HLrgEx8CH1bEV91yRVGE2FDkPvi-8-Qir8KY0rSmHR_2W-Jf7pM47UZ3gPkQnU9tiJsrdta6PtH137xk748Pb_NnsXh9epnfL0QtSxxEVjW5gwZLNKaqpKtLVRNJ43SGTrXKYIEgQeeKGqmwyKeTaTVUTV2jrip1yeQxt44hpUit3cZu4-LeItiDGntUYyc19leNxQlSRyhNz35J0a7DGP3U8z_qB0r4aOg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kiliç, S. Ş. Ş.</creator><creator>Çelik, E.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1402-1457</orcidid></search><sort><creationdate>20240901</creationdate><title>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</title><author>Kiliç, S. Ş. Ş. ; Çelik, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiliç, S. Ş. Ş.</creatorcontrib><creatorcontrib>Çelik, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiliç, S. Ş. Ş.</au><au>Çelik, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>73</volume><issue>4</issue><spage>1793</spage><epage>1800</epage><pages>1793-1800</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the
m
+
1
G
′
-expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-022-00698-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1402-1457</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2024-09, Vol.73 (4), p.1793-1800 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11587_022_00698_1 |
source | Springer Nature |
subjects | Algebra Analysis Geometry Mathematics Mathematics and Statistics Numerical Analysis Probability Theory and Stochastic Processes |
title | Complex solutions to the higher-order nonlinear boussinesq type wave equation transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20solutions%20to%20the%20higher-order%20nonlinear%20boussinesq%20type%20wave%20equation%20transform&rft.jtitle=Ricerche%20di%20matematica&rft.au=Kili%C3%A7,%20S.%20%C5%9E.%20%C5%9E.&rft.date=2024-09-01&rft.volume=73&rft.issue=4&rft.spage=1793&rft.epage=1800&rft.pages=1793-1800&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-022-00698-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s11587_022_00698_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |