Loading…

Complex solutions to the higher-order nonlinear boussinesq type wave equation transform

The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions...

Full description

Saved in:
Bibliographic Details
Published in:Ricerche di matematica 2024-09, Vol.73 (4), p.1793-1800
Main Authors: Kiliç, S. Ş. Ş., Çelik, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3
cites cdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3
container_end_page 1800
container_issue 4
container_start_page 1793
container_title Ricerche di matematica
container_volume 73
creator Kiliç, S. Ş. Ş.
Çelik, E.
description The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the m + 1 G ′ -expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.
doi_str_mv 10.1007/s11587-022-00698-1
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11587_022_00698_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11587_022_00698_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6z8A4YZO46TJap4SZXYgFhaTjJpU6V2aydA_56UsmY1o9Gcq6vD2A3CLQKYu4SoCyNASgGQl4XAEzbDQhqhshJP2QxAaaFBFefsIqU1QGY0ZDP2MQ-bbU_fPIV-HLrgEx8CH1bEV91yRVGE2FDkPvi-8-Qir8KY0rSmHR_2W-Jf7pM47UZ3gPkQnU9tiJsrdta6PtH137xk748Pb_NnsXh9epnfL0QtSxxEVjW5gwZLNKaqpKtLVRNJ43SGTrXKYIEgQeeKGqmwyKeTaTVUTV2jrip1yeQxt44hpUit3cZu4-LeItiDGntUYyc19leNxQlSRyhNz35J0a7DGP3U8z_qB0r4aOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</title><source>Springer Nature</source><creator>Kiliç, S. Ş. Ş. ; Çelik, E.</creator><creatorcontrib>Kiliç, S. Ş. Ş. ; Çelik, E.</creatorcontrib><description>The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the m + 1 G ′ -expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-022-00698-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes</subject><ispartof>Ricerche di matematica, 2024-09, Vol.73 (4), p.1793-1800</ispartof><rights>Università degli Studi di Napoli "Federico II" 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</citedby><cites>FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</cites><orcidid>0000-0002-1402-1457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kiliç, S. Ş. Ş.</creatorcontrib><creatorcontrib>Çelik, E.</creatorcontrib><title>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the m + 1 G ′ -expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6z8A4YZO46TJap4SZXYgFhaTjJpU6V2aydA_56UsmY1o9Gcq6vD2A3CLQKYu4SoCyNASgGQl4XAEzbDQhqhshJP2QxAaaFBFefsIqU1QGY0ZDP2MQ-bbU_fPIV-HLrgEx8CH1bEV91yRVGE2FDkPvi-8-Qir8KY0rSmHR_2W-Jf7pM47UZ3gPkQnU9tiJsrdta6PtH137xk748Pb_NnsXh9epnfL0QtSxxEVjW5gwZLNKaqpKtLVRNJ43SGTrXKYIEgQeeKGqmwyKeTaTVUTV2jrip1yeQxt44hpUit3cZu4-LeItiDGntUYyc19leNxQlSRyhNz35J0a7DGP3U8z_qB0r4aOg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kiliç, S. Ş. Ş.</creator><creator>Çelik, E.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1402-1457</orcidid></search><sort><creationdate>20240901</creationdate><title>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</title><author>Kiliç, S. Ş. Ş. ; Çelik, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiliç, S. Ş. Ş.</creatorcontrib><creatorcontrib>Çelik, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiliç, S. Ş. Ş.</au><au>Çelik, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex solutions to the higher-order nonlinear boussinesq type wave equation transform</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>73</volume><issue>4</issue><spage>1793</spage><epage>1800</epage><pages>1793-1800</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the m + 1 G ′ -expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-022-00698-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1402-1457</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2024-09, Vol.73 (4), p.1793-1800
issn 0035-5038
1827-3491
language eng
recordid cdi_crossref_primary_10_1007_s11587_022_00698_1
source Springer Nature
subjects Algebra
Analysis
Geometry
Mathematics
Mathematics and Statistics
Numerical Analysis
Probability Theory and Stochastic Processes
title Complex solutions to the higher-order nonlinear boussinesq type wave equation transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20solutions%20to%20the%20higher-order%20nonlinear%20boussinesq%20type%20wave%20equation%20transform&rft.jtitle=Ricerche%20di%20matematica&rft.au=Kili%C3%A7,%20S.%20%C5%9E.%20%C5%9E.&rft.date=2024-09-01&rft.volume=73&rft.issue=4&rft.spage=1793&rft.epage=1800&rft.pages=1793-1800&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-022-00698-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s11587_022_00698_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4bd6a0d19177bb2ac93cee27a541a3f37181020563ed23186f377f50bdcc15bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true