Loading…
Estimating long-term daily PM2.5 concentrations using deep learning over Delhi, India, and analyzing temporal variations in it
Saved in:
Published in: | Acta geophysica 2024-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c791-7a4772b6cd369f8c05e4cfa7430c0ce4a4b2c47c69eca4da4f2d71c3fa8910533 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Acta geophysica |
container_volume | |
creator | Athira, T. Agilan, V. |
description | |
doi_str_mv | 10.1007/s11600-024-01486-1 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11600_024_01486_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11600_024_01486_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791-7a4772b6cd369f8c05e4cfa7430c0ce4a4b2c47c69eca4da4f2d71c3fa8910533</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsv4CkP0NRJNrvZPUqttVDRQ-9hmmRrZJstyVqoB5_dXduDh2Hmh48f5iPknsOUA6iHxHkBwEBIBlyWBeMXZMTLKmdK5vnlv_ua3KT0CVBI4GJEfuap8zvsfNjSpg1b1rm4oxZ9c6Tvr2KaU9MG40IXe6YNiX6lAbXO7WnjMIYhtQcX6ZNrPvyELoP1OKEYbD_YHL8HoHO7fRuxoQeM_lzkA_XdLbmqsUnu7rzHZP08X89e2OptsZw9rphRFWcKpVJiUxibFVVdGsidNDUqmYEB4yTKjTBSmaJyBqVFWQuruMlqLCsOeZaNiTjVmtimFF2t97H_Oh41Bz0I1CeBuheo_wRqnv0C0Zllwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating long-term daily PM2.5 concentrations using deep learning over Delhi, India, and analyzing temporal variations in it</title><source>Springer Link</source><creator>Athira, T. ; Agilan, V.</creator><creatorcontrib>Athira, T. ; Agilan, V.</creatorcontrib><identifier>ISSN: 1895-7455</identifier><identifier>EISSN: 1895-7455</identifier><identifier>DOI: 10.1007/s11600-024-01486-1</identifier><language>eng</language><ispartof>Acta geophysica, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c791-7a4772b6cd369f8c05e4cfa7430c0ce4a4b2c47c69eca4da4f2d71c3fa8910533</cites><orcidid>0000-0002-4791-2627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Athira, T.</creatorcontrib><creatorcontrib>Agilan, V.</creatorcontrib><title>Estimating long-term daily PM2.5 concentrations using deep learning over Delhi, India, and analyzing temporal variations in it</title><title>Acta geophysica</title><issn>1895-7455</issn><issn>1895-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEQhoMoWKsv4CkP0NRJNrvZPUqttVDRQ-9hmmRrZJstyVqoB5_dXduDh2Hmh48f5iPknsOUA6iHxHkBwEBIBlyWBeMXZMTLKmdK5vnlv_ua3KT0CVBI4GJEfuap8zvsfNjSpg1b1rm4oxZ9c6Tvr2KaU9MG40IXe6YNiX6lAbXO7WnjMIYhtQcX6ZNrPvyELoP1OKEYbD_YHL8HoHO7fRuxoQeM_lzkA_XdLbmqsUnu7rzHZP08X89e2OptsZw9rphRFWcKpVJiUxibFVVdGsidNDUqmYEB4yTKjTBSmaJyBqVFWQuruMlqLCsOeZaNiTjVmtimFF2t97H_Oh41Bz0I1CeBuheo_wRqnv0C0Zllwg</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Athira, T.</creator><creator>Agilan, V.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4791-2627</orcidid></search><sort><creationdate>20241218</creationdate><title>Estimating long-term daily PM2.5 concentrations using deep learning over Delhi, India, and analyzing temporal variations in it</title><author>Athira, T. ; Agilan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791-7a4772b6cd369f8c05e4cfa7430c0ce4a4b2c47c69eca4da4f2d71c3fa8910533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athira, T.</creatorcontrib><creatorcontrib>Agilan, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta geophysica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athira, T.</au><au>Agilan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating long-term daily PM2.5 concentrations using deep learning over Delhi, India, and analyzing temporal variations in it</atitle><jtitle>Acta geophysica</jtitle><date>2024-12-18</date><risdate>2024</risdate><issn>1895-7455</issn><eissn>1895-7455</eissn><doi>10.1007/s11600-024-01486-1</doi><orcidid>https://orcid.org/0000-0002-4791-2627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1895-7455 |
ispartof | Acta geophysica, 2024-12 |
issn | 1895-7455 1895-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11600_024_01486_1 |
source | Springer Link |
title | Estimating long-term daily PM2.5 concentrations using deep learning over Delhi, India, and analyzing temporal variations in it |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20long-term%20daily%20PM2.5%20concentrations%20using%20deep%20learning%20over%20Delhi,%20India,%20and%20analyzing%20temporal%20variations%20in%20it&rft.jtitle=Acta%20geophysica&rft.au=Athira,%20T.&rft.date=2024-12-18&rft.issn=1895-7455&rft.eissn=1895-7455&rft_id=info:doi/10.1007/s11600-024-01486-1&rft_dat=%3Ccrossref%3E10_1007_s11600_024_01486_1%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c791-7a4772b6cd369f8c05e4cfa7430c0ce4a4b2c47c69eca4da4f2d71c3fa8910533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |