Loading…
Microstructures and Mechanical Properties of Bearing Steels Modified for Preparing Nanostructured Bainite
Mo containing high-C-Cr bearing steel was modified with Si (0.8–1.5 wt.%) and 0.8Si–1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region,...
Saved in:
Published in: | Journal of materials engineering and performance 2016-10, Vol.25 (10), p.4249-4255 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mo containing high-C-Cr bearing steel was modified with Si (0.8–1.5 wt.%) and 0.8Si–1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region, and the resultant microstructure and mechanical properties were studied. Carbide-free nanostructured bainite with plate thickness below 100 nm and film retained austenite, as well as a small amount of undissolved carbide particles, was obtained in the modified steels except in 0.8Si steel, in which carbides precipitated in bainitic ferrite. As Si content increased, the mean thickness of bainitic ferrite plates modestly decreased, whereas the fraction of retained austenite markedly increased. The thickness of bainitic ferrite plate and the fraction of retained austenite in Si-Al-modified steel were smaller than those in Si-modified steels. The hardness and elongation of the Si-Al-modified steel were lower than those of Si-modified steels. The yield strength of Si-Al-modified steel was superior to that of Si-modified steels. Mid-level ultimate tensile strength and impact toughness were achieved in Si-Al-modified steel. For bearing applications, Si-modified steels could provide higher hardness and toughness but lower dimensional stability. Meanwhile, Si-Al-modified steel could offer higher dimensional stability but lower hardness and toughness. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-016-2289-8 |