Loading…

Effect of Surface Preparation on the Microstructure, Adhesion, and Tensile Properties of Cold-Sprayed Aluminum Coatings on AA2024 Substrates

Commercially pure aluminum coatings (CP-Al) were applied to AA 2024-T351 substrates utilizing the cold spray process using different surface preparation methods and carrier gases; the resulting microstructures and mechanical properties were investigated. Substrate preparation methods were examined t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal spray technology 2015-02, Vol.24 (3), p.410-422
Main Authors: Sharma, M. M., Eden, T. J., Golesich, B. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commercially pure aluminum coatings (CP-Al) were applied to AA 2024-T351 substrates utilizing the cold spray process using different surface preparation methods and carrier gases; the resulting microstructures and mechanical properties were investigated. Substrate preparation methods were examined to understand the effect of substrate roughness on coating properties, to minimize embedded grit, and to identify the surface preparation method that yielded the best combination of coating properties. Three substrate roughing preparations, glass bead, SiC grit, and alumina grit blast, were examined while utilizing both helium and nitrogen as carrier gases in the cold spray process. Coatings that were oxide free, possessing densities greater than 99% were achieved, with the mean coating porosity ranging 0.1-0.5%. The highest mean adhesion strength was 42 MPa for the nitrogen gas and 20 MPa for the helium gas, both using glass bead surface preparation. For the nitrogen process gas samples, the surface preparation methods that produced high pull strengths correlated to bend test specimens that showed no signs of cracking on surfaces or edges. The overall best combination of mechanical property results was achieved with coatings prepared by glass bead surface roughening using nitrogen as a carrier gas.
ISSN:1059-9630
1544-1016
DOI:10.1007/s11666-014-0175-1