Loading…

Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)

One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detect...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal spray technology 2016-01, Vol.25 (1-2), p.21-27
Main Authors: Hartz-Behrend, K., Schaup, J., Zierhut, J., Schein, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.
ISSN:1059-9630
1544-1016
DOI:10.1007/s11666-015-0341-0