Loading…

In Situ Measurement of Track Shape in Cold Spray Deposits

Cold spray is a material deposition technology with a high deposition rate and attractive material properties that has great interest for additive manufacturing (AM). Successfully cold spraying free-form parts that are close to their intended shape, however, requires knowing the fundamental shape of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal spray technology 2024-10, Vol.33 (7), p.2189-2208
Main Authors: Julien, Scott E., Hanson, Nathaniel, Lynch, Joseph, Boese, Samuel, Roberts, Kirstyn, Padir, Taşkin, Ozdemir, Ozan C., Müftü, Sinan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cold spray is a material deposition technology with a high deposition rate and attractive material properties that has great interest for additive manufacturing (AM). Successfully cold spraying free-form parts that are close to their intended shape, however, requires knowing the fundamental shape of the sprayed track, so that a spray path can be planned that builds up a part from a progressively overlaid sequence of tracks. Several studies have measured track shape using ex situ or quasi-in situ approaches, but an in situ measurement approach has, to the authors’ knowledge, not yet been reported. Furthermore, most studies characterize the track cross section as a symmetric Gaussian probability density function (PDF) with fixed shape parameters. The present study implements a novel in situ track shape measurement technique using a custom-built nozzle-tracking laser profilometry system. The shape of the track is recorded throughout the duration of a spray, allowing a comprehensive investigation of how the track shape evolves as the deposit is built up. A skewed track shape is observed—likely due to the side-injection design of the applicator used—and a skewed Gaussian PDF—a more generalized version of the standard Gaussian PDF—is fit to the track profile. The skewed Gaussian fit parameters are studied across two principal nozzle path parameters: nozzle traverse speed and step size. Empirical relationships between the fit parameters and the nozzle path parameters are derived, and a physics-based inverse relationship between nozzle speed and powder mass deposition rate is obtained. One of the fit parameters is shown to be an effective means of monitoring deposition efficiency during spraying. Overall, the approach presents a promising means of measuring track shape, in situ, as well as modeling it using a more general shape function.
ISSN:1059-9630
1544-1016
DOI:10.1007/s11666-024-01826-z