Loading…
Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide
The decomposition mechanism of ammonium sulfate catalyzed by ferric oxide was investigated in this paper. The decomposition kinetics parameters were determined via a global optimization of the Kissinger iterative method using the non-isothermal thermogravimetric analysis data. The products and inter...
Saved in:
Published in: | Frontiers of chemical science and engineering 2013-06, Vol.7 (2), p.210-217 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The decomposition mechanism of ammonium sulfate catalyzed by ferric oxide was investigated in this paper. The decomposition kinetics parameters were determined via a global optimization of the Kissinger iterative method using the non-isothermal thermogravimetric analysis data. The products and intermediates were synchronously characterized by X-ray diffraction and mass spectrometry. The obtained results indicate that the decomposition process of ammonium sulfate catalyzed by ferric oxide can be divided into four stages of which the activation energies are 123.64, 126.58, 178.77 and 216.99 kJ·mol
−1
respectively. The decomposition mechanisms at the first and the fourth stage both belong to Mample power theorem, the second stage belongs to Avrami-Erofeev equation and the third belongs to contracting sphere (volume) equation. The corresponding pre-exponential factors (
A
) are calculated simultaneously. |
---|---|
ISSN: | 2095-0179 2095-0187 |
DOI: | 10.1007/s11705-013-1320-y |