Loading…
Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications
The ductility of as-fabricated Ti-6Al-4V falls far short of the requirements for biomedical titanium alloy implants and the heat treatment remains the only applicable option for improvement of their mechanical properties. In the present study, the decomposition of as-fabricated martensite was invest...
Saved in:
Published in: | Frontiers of materials science 2015-12, Vol.9 (4), p.373-381 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ductility of as-fabricated Ti-6Al-4V falls far short of the requirements for biomedical titanium alloy implants and the heat treatment remains the only applicable option for improvement of their mechanical properties. In the present study, the decomposition of as-fabricated martensite was investigated to provide a general understanding on the kinetics of its phase transformation. The decomposition of as-fabricated martensite was found to be slower than that of water-quenched martensite. It indicates that specific heat treatment strategy is needed to be explored for as-fabricated Ti-6Al-4V. Three strategies of heat treatment were proposed based on different phase transformation mechanisms and classified as subtransus treatment, supersolvus treatment and mixed treatment. These specific heat treatments were conducted on selective laser melted samples to investigate the evolutions of microstructure and mechanical properties. The subtransus treatment leaded to a basket-weave structure without changing the morphology of columnar prior β grains. The supersolvus treatment resulted in a lamellar structure and equiaxed β grains. The mixed treatment yielded a microstructure that combines both features of the subtransus treatment and supersolvus treatment. The subtransus treatment is found to be the best choice among these three strategies for as-fabricated Ti-6Al-4V to be used as biomedical implants. |
---|---|
ISSN: | 2095-025X 2095-0268 |
DOI: | 10.1007/s11706-015-0315-7 |