Loading…
Bolstering stochastic gradient descent with model building
Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning proces...
Saved in:
Published in: | TOP 2024-10, Vol.32 (3), p.517-536 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-3ea76ada04e14fd255b6a0ddc8a049ef44c40bb3078bdf7f087d4df4e638fea63 |
container_end_page | 536 |
container_issue | 3 |
container_start_page | 517 |
container_title | TOP |
container_volume | 32 |
creator | Birbil, Ş. İlker Martin, Özgür Onay, Gönenç Öztoprak, Figen |
description | Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods. |
doi_str_mv | 10.1007/s11750-024-00673-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11750_024_00673_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11750_024_00673_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-3ea76ada04e14fd255b6a0ddc8a049ef44c40bb3078bdf7f087d4df4e638fea63</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqXwA6zyA4Zx7NguO6igIFViA2vL8aN1lSaV7QrRr8chrFnd0eie0RyEbgncEQBxnwgRDWCoGQbgguLTGZoRySmWtVicl5lQhhvB2SW6Smk3ljiFGXp4GrqUXQz9pkp5MFudcjDVJmobXJ8r65IZ8yvkbbUfrOuq9hg6W_rX6MLrLrmbv5yjz5fnj-UrXr-v3paPa2xqyTOmTguurQbmCPO2bpqWa7DWyLJaOM-YYdC2FIRsrRcepLDMeuY4ld5pTueonu6aOKQUnVeHGPY6fisCarRXk70q9urXXp0KRCcoHUY3F9VuOMa-_Pkf9QNegl91</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bolstering stochastic gradient descent with model building</title><source>Springer Link</source><creator>Birbil, Ş. İlker ; Martin, Özgür ; Onay, Gönenç ; Öztoprak, Figen</creator><creatorcontrib>Birbil, Ş. İlker ; Martin, Özgür ; Onay, Gönenç ; Öztoprak, Figen</creatorcontrib><description>Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods.</description><identifier>ISSN: 1134-5764</identifier><identifier>EISSN: 1863-8279</identifier><identifier>DOI: 10.1007/s11750-024-00673-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Business and Management ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Industrial and Production Engineering ; Insurance ; Management ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Statistics for Business</subject><ispartof>TOP, 2024-10, Vol.32 (3), p.517-536</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-3ea76ada04e14fd255b6a0ddc8a049ef44c40bb3078bdf7f087d4df4e638fea63</cites><orcidid>0000-0001-7472-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Birbil, Ş. İlker</creatorcontrib><creatorcontrib>Martin, Özgür</creatorcontrib><creatorcontrib>Onay, Gönenç</creatorcontrib><creatorcontrib>Öztoprak, Figen</creatorcontrib><title>Bolstering stochastic gradient descent with model building</title><title>TOP</title><addtitle>TOP</addtitle><description>Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods.</description><subject>Business and Management</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Industrial and Production Engineering</subject><subject>Insurance</subject><subject>Management</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Statistics for Business</subject><issn>1134-5764</issn><issn>1863-8279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqXwA6zyA4Zx7NguO6igIFViA2vL8aN1lSaV7QrRr8chrFnd0eie0RyEbgncEQBxnwgRDWCoGQbgguLTGZoRySmWtVicl5lQhhvB2SW6Smk3ljiFGXp4GrqUXQz9pkp5MFudcjDVJmobXJ8r65IZ8yvkbbUfrOuq9hg6W_rX6MLrLrmbv5yjz5fnj-UrXr-v3paPa2xqyTOmTguurQbmCPO2bpqWa7DWyLJaOM-YYdC2FIRsrRcepLDMeuY4ld5pTueonu6aOKQUnVeHGPY6fisCarRXk70q9urXXp0KRCcoHUY3F9VuOMa-_Pkf9QNegl91</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Birbil, Ş. İlker</creator><creator>Martin, Özgür</creator><creator>Onay, Gönenç</creator><creator>Öztoprak, Figen</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7472-7032</orcidid></search><sort><creationdate>20241001</creationdate><title>Bolstering stochastic gradient descent with model building</title><author>Birbil, Ş. İlker ; Martin, Özgür ; Onay, Gönenç ; Öztoprak, Figen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-3ea76ada04e14fd255b6a0ddc8a049ef44c40bb3078bdf7f087d4df4e638fea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Industrial and Production Engineering</topic><topic>Insurance</topic><topic>Management</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birbil, Ş. İlker</creatorcontrib><creatorcontrib>Martin, Özgür</creatorcontrib><creatorcontrib>Onay, Gönenç</creatorcontrib><creatorcontrib>Öztoprak, Figen</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>TOP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birbil, Ş. İlker</au><au>Martin, Özgür</au><au>Onay, Gönenç</au><au>Öztoprak, Figen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bolstering stochastic gradient descent with model building</atitle><jtitle>TOP</jtitle><stitle>TOP</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>3</issue><spage>517</spage><epage>536</epage><pages>517-536</pages><issn>1134-5764</issn><eissn>1863-8279</eissn><abstract>Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11750-024-00673-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7472-7032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1134-5764 |
ispartof | TOP, 2024-10, Vol.32 (3), p.517-536 |
issn | 1134-5764 1863-8279 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11750_024_00673_z |
source | Springer Link |
subjects | Business and Management Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Industrial and Production Engineering Insurance Management Operations Research/Decision Theory Optimization Original Paper Statistics for Business |
title | Bolstering stochastic gradient descent with model building |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bolstering%20stochastic%20gradient%20descent%20with%20model%20building&rft.jtitle=TOP&rft.au=Birbil,%20%C5%9E.%20%C4%B0lker&rft.date=2024-10-01&rft.volume=32&rft.issue=3&rft.spage=517&rft.epage=536&rft.pages=517-536&rft.issn=1134-5764&rft.eissn=1863-8279&rft_id=info:doi/10.1007/s11750-024-00673-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s11750_024_00673_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-3ea76ada04e14fd255b6a0ddc8a049ef44c40bb3078bdf7f087d4df4e638fea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |