Loading…
Subband-dependent compressed sensing in local CT reconstruction
To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2016-09, Vol.10 (6), p.1009-1015 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73 |
container_end_page | 1015 |
container_issue | 6 |
container_start_page | 1009 |
container_title | Signal, image and video processing |
container_volume | 10 |
creator | Hashemi, SayedMasoud Beheshti, Soosan Cobbold, Richard S. C. Paul, Narinder S. |
description | To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method. |
doi_str_mv | 10.1007/s11760-015-0852-7 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11760_015_0852_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11760_015_0852_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGofwN28QPQkmVxciRRvUHBhXYdcTsqUNlOSmYVv7wwVl57NOYvz_fx8hNwyuGMA-r4yphVQYJKCkZzqC7JgRgnKNGOXfzeIa7KqdQ_TCK6NMgvy-Dl673KkEU-YI-ahCf3xVLBWjE3FXLu8a7rcHPrgDs162xQMfa5DGcPQ9fmGXCV3qLj63Uvy9fK8Xb_Rzcfr-_ppQwM3ZqDRB8MhJOkFOq2d58or3RpUgosUJAjlMcFDDAoTgxYkl1zIVifDRXRaLAk754bS11ow2VPpjq58WwZ2lmDPEuwkwc4S7MzwM1On37zDYvf9WPJU8x_oB0CeXzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subband-dependent compressed sensing in local CT reconstruction</title><source>Springer Nature</source><creator>Hashemi, SayedMasoud ; Beheshti, Soosan ; Cobbold, Richard S. C. ; Paul, Narinder S.</creator><creatorcontrib>Hashemi, SayedMasoud ; Beheshti, Soosan ; Cobbold, Richard S. C. ; Paul, Narinder S.</creatorcontrib><description>To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-015-0852-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2016-09, Vol.10 (6), p.1009-1015</ispartof><rights>Springer-Verlag London 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</citedby><cites>FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><creatorcontrib>Beheshti, Soosan</creatorcontrib><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><title>Subband-dependent compressed sensing in local CT reconstruction</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWGofwN28QPQkmVxciRRvUHBhXYdcTsqUNlOSmYVv7wwVl57NOYvz_fx8hNwyuGMA-r4yphVQYJKCkZzqC7JgRgnKNGOXfzeIa7KqdQ_TCK6NMgvy-Dl673KkEU-YI-ahCf3xVLBWjE3FXLu8a7rcHPrgDs162xQMfa5DGcPQ9fmGXCV3qLj63Uvy9fK8Xb_Rzcfr-_ppQwM3ZqDRB8MhJOkFOq2d58or3RpUgosUJAjlMcFDDAoTgxYkl1zIVifDRXRaLAk754bS11ow2VPpjq58WwZ2lmDPEuwkwc4S7MzwM1On37zDYvf9WPJU8x_oB0CeXzc</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hashemi, SayedMasoud</creator><creator>Beheshti, Soosan</creator><creator>Cobbold, Richard S. C.</creator><creator>Paul, Narinder S.</creator><general>Springer London</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Subband-dependent compressed sensing in local CT reconstruction</title><author>Hashemi, SayedMasoud ; Beheshti, Soosan ; Cobbold, Richard S. C. ; Paul, Narinder S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><creatorcontrib>Beheshti, Soosan</creatorcontrib><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, SayedMasoud</au><au>Beheshti, Soosan</au><au>Cobbold, Richard S. C.</au><au>Paul, Narinder S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subband-dependent compressed sensing in local CT reconstruction</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1009</spage><epage>1015</epage><pages>1009-1015</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-015-0852-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2016-09, Vol.10 (6), p.1009-1015 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11760_015_0852_7 |
source | Springer Nature |
subjects | Computer Imaging Computer Science Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Vision |
title | Subband-dependent compressed sensing in local CT reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subband-dependent%20compressed%20sensing%20in%20local%20CT%20reconstruction&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Hashemi,%20SayedMasoud&rft.date=2016-09-01&rft.volume=10&rft.issue=6&rft.spage=1009&rft.epage=1015&rft.pages=1009-1015&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-015-0852-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s11760_015_0852_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |