Loading…

Subband-dependent compressed sensing in local CT reconstruction

To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing image and video processing, 2016-09, Vol.10 (6), p.1009-1015
Main Authors: Hashemi, SayedMasoud, Beheshti, Soosan, Cobbold, Richard S. C., Paul, Narinder S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73
cites cdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73
container_end_page 1015
container_issue 6
container_start_page 1009
container_title Signal, image and video processing
container_volume 10
creator Hashemi, SayedMasoud
Beheshti, Soosan
Cobbold, Richard S. C.
Paul, Narinder S.
description To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.
doi_str_mv 10.1007/s11760-015-0852-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11760_015_0852_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11760_015_0852_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGofwN28QPQkmVxciRRvUHBhXYdcTsqUNlOSmYVv7wwVl57NOYvz_fx8hNwyuGMA-r4yphVQYJKCkZzqC7JgRgnKNGOXfzeIa7KqdQ_TCK6NMgvy-Dl673KkEU-YI-ahCf3xVLBWjE3FXLu8a7rcHPrgDs162xQMfa5DGcPQ9fmGXCV3qLj63Uvy9fK8Xb_Rzcfr-_ppQwM3ZqDRB8MhJOkFOq2d58or3RpUgosUJAjlMcFDDAoTgxYkl1zIVifDRXRaLAk754bS11ow2VPpjq58WwZ2lmDPEuwkwc4S7MzwM1On37zDYvf9WPJU8x_oB0CeXzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subband-dependent compressed sensing in local CT reconstruction</title><source>Springer Nature</source><creator>Hashemi, SayedMasoud ; Beheshti, Soosan ; Cobbold, Richard S. C. ; Paul, Narinder S.</creator><creatorcontrib>Hashemi, SayedMasoud ; Beheshti, Soosan ; Cobbold, Richard S. C. ; Paul, Narinder S.</creatorcontrib><description>To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-015-0852-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2016-09, Vol.10 (6), p.1009-1015</ispartof><rights>Springer-Verlag London 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</citedby><cites>FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><creatorcontrib>Beheshti, Soosan</creatorcontrib><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><title>Subband-dependent compressed sensing in local CT reconstruction</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWGofwN28QPQkmVxciRRvUHBhXYdcTsqUNlOSmYVv7wwVl57NOYvz_fx8hNwyuGMA-r4yphVQYJKCkZzqC7JgRgnKNGOXfzeIa7KqdQ_TCK6NMgvy-Dl673KkEU-YI-ahCf3xVLBWjE3FXLu8a7rcHPrgDs162xQMfa5DGcPQ9fmGXCV3qLj63Uvy9fK8Xb_Rzcfr-_ppQwM3ZqDRB8MhJOkFOq2d58or3RpUgosUJAjlMcFDDAoTgxYkl1zIVifDRXRaLAk754bS11ow2VPpjq58WwZ2lmDPEuwkwc4S7MzwM1On37zDYvf9WPJU8x_oB0CeXzc</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hashemi, SayedMasoud</creator><creator>Beheshti, Soosan</creator><creator>Cobbold, Richard S. C.</creator><creator>Paul, Narinder S.</creator><general>Springer London</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Subband-dependent compressed sensing in local CT reconstruction</title><author>Hashemi, SayedMasoud ; Beheshti, Soosan ; Cobbold, Richard S. C. ; Paul, Narinder S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><creatorcontrib>Beheshti, Soosan</creatorcontrib><creatorcontrib>Cobbold, Richard S. C.</creatorcontrib><creatorcontrib>Paul, Narinder S.</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, SayedMasoud</au><au>Beheshti, Soosan</au><au>Cobbold, Richard S. C.</au><au>Paul, Narinder S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subband-dependent compressed sensing in local CT reconstruction</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1009</spage><epage>1015</epage><pages>1009-1015</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>To achieve high-quality low-dose computed tomography (CT) images, compressed sensing (CS)-based CT reconstructions recover the images using fewer projections; and wavelet inverse Radon algorithms recover wavelet subbands of CT images from locally scanned projections. Moreover, it has been shown that subband CS algorithms accelerate the convergence of the CS recovery methods. Here, we propose an innovative combination of a newly developed accelerated wavelet inverse Radon transform and non-convex CS formulation to recover the wavelet subbands of CT images from a reduced number of locally scanned X-ray projections. Fast pseudo-polar Fourier transform is used to decrease the computational complexity of CS recovery. Therefore, the proposed method, denoted by AWiR-SISTA, reduces the radiation dose by simultaneously decreasing the X-ray exposure area and the number of projections, decreases the CS computational complexity, and accelerates the CS recovery convergence rate. Phantom-based simulations show that high-quality ultra-low-dose local CT images can be reconstructed using the proposed method in few seconds, without numerical optimization. Clinical chest CT images are used to demonstrate the practical potential of the method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-015-0852-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2016-09, Vol.10 (6), p.1009-1015
issn 1863-1703
1863-1711
language eng
recordid cdi_crossref_primary_10_1007_s11760_015_0852_7
source Springer Nature
subjects Computer Imaging
Computer Science
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
title Subband-dependent compressed sensing in local CT reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subband-dependent%20compressed%20sensing%20in%20local%20CT%20reconstruction&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Hashemi,%20SayedMasoud&rft.date=2016-09-01&rft.volume=10&rft.issue=6&rft.spage=1009&rft.epage=1015&rft.pages=1009-1015&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-015-0852-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s11760_015_0852_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-dbc820cf5b3ea77ab26b6748e6323fc5036bef09dc6ef104052523547f823da73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true