Loading…
2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation
Accurate segmentation of colon polyps in endoscopic images is crucial for early colorectal cancer diagnosis and treatment planning. However, achieving this is particularly challenging due to the diverse characteristics of polyps, including variations in size, color, shape, position, boundary ambigui...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2024-08, Vol.18 (6-7), p.5377-5386 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-43f1bf8cea82e5d186c43f5154fb0c13426a89222696214315c185e06d9d23ad3 |
container_end_page | 5386 |
container_issue | 6-7 |
container_start_page | 5377 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Bakkouri, Ibtissam Bakkouri, Siham |
description | Accurate segmentation of colon polyps in endoscopic images is crucial for early colorectal cancer diagnosis and treatment planning. However, achieving this is particularly challenging due to the diverse characteristics of polyps, including variations in size, color, shape, position, boundary ambiguity, and complex structure. To address these challenges, this paper introduces the Multi-level Multi-scale Gated Attentional Squeezed Network (2MGAS-Net), a robust deep learning model designed specifically for polyp segmentation. 2MGAS-Net incorporates a novel modular Multi-scale Gated Attentional Squeezed Feature Fusion (MGAS2F) strategy. MGAS2F effectively captures contextual information at multiple scales through a combination of Multi-scale Squeezed Feature Fusion (MS2F) and Cascaded Gated Attentional Transformer (CGA-T) modules. MS2F enhances the model’s ability to extract detailed polyp features, while CGA-T guides the model for accurate polyp boundary estimation. Experiments on publicly available datasets demonstrate that 2MGAS-Net outperforms existing state-of-the-art methods. This indicates its potential to improve polyp segmentation accuracy significantly, facilitating more accurate clinical decision-making and potentially revolutionizing diagnostic approaches for colorectal cancer. |
doi_str_mv | 10.1007/s11760-024-03240-y |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11760_024_03240_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11760_024_03240_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-43f1bf8cea82e5d186c43f5154fb0c13426a89222696214315c185e06d9d23ad3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWLQv4GlfIJpJstnUWylahaoH9SaENDtbWtPdmqTK-vSmtnh0LjP8_P8w8xFyAewSGKuuIkClGGVcUia4ZLQ_IgPQSlCoAI7_ZiZOyTDGFcsleKWVHpA3_jAdP9NHTNfFeuvTknr8RH-Yo7Mei4VNWBc2JWzTsmutL-LHFvE7iy2mry68F00Xik3n-00RcbHOPrtznpOTxvqIw0M_I6-3Ny-TOzp7mt5PxjPquOSJStHAvNEOreZY1vlal6USStnMmQMhubJ6xDlXI8VBCigd6BKZqkc1F7YWZ4Tv97rQxRiwMZuwXNvQG2Bmh8jsEZmMyPwiMn0OiX0oZnO7wGBW3Tbk7-J_qR9YLmo_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation</title><source>Springer Nature</source><creator>Bakkouri, Ibtissam ; Bakkouri, Siham</creator><creatorcontrib>Bakkouri, Ibtissam ; Bakkouri, Siham</creatorcontrib><description>Accurate segmentation of colon polyps in endoscopic images is crucial for early colorectal cancer diagnosis and treatment planning. However, achieving this is particularly challenging due to the diverse characteristics of polyps, including variations in size, color, shape, position, boundary ambiguity, and complex structure. To address these challenges, this paper introduces the Multi-level Multi-scale Gated Attentional Squeezed Network (2MGAS-Net), a robust deep learning model designed specifically for polyp segmentation. 2MGAS-Net incorporates a novel modular Multi-scale Gated Attentional Squeezed Feature Fusion (MGAS2F) strategy. MGAS2F effectively captures contextual information at multiple scales through a combination of Multi-scale Squeezed Feature Fusion (MS2F) and Cascaded Gated Attentional Transformer (CGA-T) modules. MS2F enhances the model’s ability to extract detailed polyp features, while CGA-T guides the model for accurate polyp boundary estimation. Experiments on publicly available datasets demonstrate that 2MGAS-Net outperforms existing state-of-the-art methods. This indicates its potential to improve polyp segmentation accuracy significantly, facilitating more accurate clinical decision-making and potentially revolutionizing diagnostic approaches for colorectal cancer.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03240-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2024-08, Vol.18 (6-7), p.5377-5386</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-43f1bf8cea82e5d186c43f5154fb0c13426a89222696214315c185e06d9d23ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bakkouri, Ibtissam</creatorcontrib><creatorcontrib>Bakkouri, Siham</creatorcontrib><title>2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Accurate segmentation of colon polyps in endoscopic images is crucial for early colorectal cancer diagnosis and treatment planning. However, achieving this is particularly challenging due to the diverse characteristics of polyps, including variations in size, color, shape, position, boundary ambiguity, and complex structure. To address these challenges, this paper introduces the Multi-level Multi-scale Gated Attentional Squeezed Network (2MGAS-Net), a robust deep learning model designed specifically for polyp segmentation. 2MGAS-Net incorporates a novel modular Multi-scale Gated Attentional Squeezed Feature Fusion (MGAS2F) strategy. MGAS2F effectively captures contextual information at multiple scales through a combination of Multi-scale Squeezed Feature Fusion (MS2F) and Cascaded Gated Attentional Transformer (CGA-T) modules. MS2F enhances the model’s ability to extract detailed polyp features, while CGA-T guides the model for accurate polyp boundary estimation. Experiments on publicly available datasets demonstrate that 2MGAS-Net outperforms existing state-of-the-art methods. This indicates its potential to improve polyp segmentation accuracy significantly, facilitating more accurate clinical decision-making and potentially revolutionizing diagnostic approaches for colorectal cancer.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWLQv4GlfIJpJstnUWylahaoH9SaENDtbWtPdmqTK-vSmtnh0LjP8_P8w8xFyAewSGKuuIkClGGVcUia4ZLQ_IgPQSlCoAI7_ZiZOyTDGFcsleKWVHpA3_jAdP9NHTNfFeuvTknr8RH-Yo7Mei4VNWBc2JWzTsmutL-LHFvE7iy2mry68F00Xik3n-00RcbHOPrtznpOTxvqIw0M_I6-3Ny-TOzp7mt5PxjPquOSJStHAvNEOreZY1vlal6USStnMmQMhubJ6xDlXI8VBCigd6BKZqkc1F7YWZ4Tv97rQxRiwMZuwXNvQG2Bmh8jsEZmMyPwiMn0OiX0oZnO7wGBW3Tbk7-J_qR9YLmo_</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bakkouri, Ibtissam</creator><creator>Bakkouri, Siham</creator><general>Springer London</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation</title><author>Bakkouri, Ibtissam ; Bakkouri, Siham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-43f1bf8cea82e5d186c43f5154fb0c13426a89222696214315c185e06d9d23ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakkouri, Ibtissam</creatorcontrib><creatorcontrib>Bakkouri, Siham</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakkouri, Ibtissam</au><au>Bakkouri, Siham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>18</volume><issue>6-7</issue><spage>5377</spage><epage>5386</epage><pages>5377-5386</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Accurate segmentation of colon polyps in endoscopic images is crucial for early colorectal cancer diagnosis and treatment planning. However, achieving this is particularly challenging due to the diverse characteristics of polyps, including variations in size, color, shape, position, boundary ambiguity, and complex structure. To address these challenges, this paper introduces the Multi-level Multi-scale Gated Attentional Squeezed Network (2MGAS-Net), a robust deep learning model designed specifically for polyp segmentation. 2MGAS-Net incorporates a novel modular Multi-scale Gated Attentional Squeezed Feature Fusion (MGAS2F) strategy. MGAS2F effectively captures contextual information at multiple scales through a combination of Multi-scale Squeezed Feature Fusion (MS2F) and Cascaded Gated Attentional Transformer (CGA-T) modules. MS2F enhances the model’s ability to extract detailed polyp features, while CGA-T guides the model for accurate polyp boundary estimation. Experiments on publicly available datasets demonstrate that 2MGAS-Net outperforms existing state-of-the-art methods. This indicates its potential to improve polyp segmentation accuracy significantly, facilitating more accurate clinical decision-making and potentially revolutionizing diagnostic approaches for colorectal cancer.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03240-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024-08, Vol.18 (6-7), p.5377-5386 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11760_024_03240_y |
source | Springer Nature |
subjects | Computer Imaging Computer Science Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Vision |
title | 2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2MGAS-Net:%20multi-level%20multi-scale%20gated%20attentional%20squeezed%20network%20for%20polyp%20segmentation&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Bakkouri,%20Ibtissam&rft.date=2024-08-01&rft.volume=18&rft.issue=6-7&rft.spage=5377&rft.epage=5386&rft.pages=5377-5386&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03240-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s11760_024_03240_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-43f1bf8cea82e5d186c43f5154fb0c13426a89222696214315c185e06d9d23ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |