Loading…

Calculation of earth pressure based on disturbed state concept theory

The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall, with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall. The effects of the magnitude of wall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Central South University of Technology. Science & technology of mining and metallurgy 2011-08, Vol.18 (4), p.1240-1247
Main Authors: Zhu, Jian-feng, Xu, Ri-qing, Li, Xin-rui, Chen, Ye-kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall, with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall. The effects of the magnitude of wall movements and different wall-movement modes are not taken into consideration. The disturbance of backfill is considered to be related to the wall movement under translation mode. On the basis of disturbed state concept (DSC), a general disturbance function was proposed which ranged from −1 to 1. The disturbance variables could be determined from the measured wall movements. A novel approach that related to disturbed degree and the mobilized internal frictional angle of the backfill was also derived. A calculation method benefited from Rankine’s theory and the proposed approach was established to predict the magnitude and distribution of earth pressure from the cohesionless backfill under translation mode. The predicted results, including the magnitude and distribution of earth pressure, show good agreement with those of the model test and the finite element method. In addition, the disturbance parameter b was also discussed.
ISSN:1005-9784
1993-0666
DOI:10.1007/s11771-011-0828-x