Loading…

Self-adaptive learning based immune algorithm

A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Central South University 2012-04, Vol.19 (4), p.1021-1031
Main Authors: Xu, Bin, Zhuang, Yi, Xue, Yu, Wang, Zhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0Ă—10 7 in average.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-012-1105-3