Loading…
Rate decline analysis of multiple fractured horizontal well in shale reservoir with triple continuum
Multiple fractured horizontal well (MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume (SRV) was presented. Pres...
Saved in:
Published in: | Journal of Central South University 2014-11, Vol.21 (11), p.4320-4329 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiple fractured horizontal well (MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume (SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity. |
---|---|
ISSN: | 2095-2899 2227-5223 |
DOI: | 10.1007/s11771-014-2431-4 |