Loading…

Pressure relief and structure stability mechanism of hard roof for gob-side entry retaining

In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Central South University 2015-11, Vol.22 (11), p.4445-4455
Main Authors: Han, Chang-liang, Zhang, Nong, Li, Bao-yu, Si, Guang-yao, Zheng, Xi-gui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis of clarification for the stress environment of gob-side entry retaining, and the equation of roof given deformation and the balance judgment for fracture block were obtained. The optimal cantilever length was proposed based on the comparison of roof structural characteristics and the stress, deformation law of surrounding rocks under six different cantilever lengths by numerical simulation method. Double stress peaks exist on the sides of gob-side entry retaining and the entry located in the low stress area. The pressure of gob-side entry retaining can be relieved by reducing the cantilever length. However, due to the impact of arch structure of rock beam, unduly short cantilever would result in insufficient pressure relief and unduly long cantilever would bring larger roof stress which results in intense deformation. Therefore, there is optimal cantilever length, which was 7-8 m in this project that enables to achieve the minimum deformation and the most stabilized rock structure of entry retaining. An engineering case of gob-side entry retaining with the direct coverage of 10 m thick hard limestone roof was put forward, and the measured data verified the reasonability of conclusion.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-015-2992-x