Loading…
Generalized metric spaces: A survey
Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the...
Saved in:
Published in: | Journal of fixed point theory and applications 2015-09, Vol.17 (3), p.455-475 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273 |
container_end_page | 475 |
container_issue | 3 |
container_start_page | 455 |
container_title | Journal of fixed point theory and applications |
container_volume | 17 |
creator | Khamsi, M. A. |
description | Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the theory that developed following its publication is known as the metric fixed point theory. Over the last one hundred years, many people have tried to generalize the definition of a metric space. In this paper, we survey the most popular generalizations and we discuss the recent uptick in some generalizations and their impact in metric fixed point theory. |
doi_str_mv | 10.1007/s11784-015-0232-5 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11784_015_0232_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11784_015_0232_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273</originalsourceid><addsrcrecordid>eNp9j01LAzEURYMoWKs_wN2A6-h7-a67UrQKhW7qOmQyLzKlnZakFeqvd8qIS1fvLt653MPYPcIjAtingmid4oCag5CC6ws2QmOQW6vM5V-W7prdlLIGMCDQjtjDnDrKYdN-U1Nt6ZDbWJV9iFSeq2lVjvmLTrfsKoVNobvfO2Yfry-r2RtfLOfvs-mCRynwwE3tglMxNVGii2FiU4MERmgdTEhkBKggtWy0rpOsg6hTEjRRmpxWloSVY4ZDb8y7UjIlv8_tNuSTR_BnSz9Y-t7Sny297hkxMKX_7T4p-_XumLt-5j_QD1GyVBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized metric spaces: A survey</title><source>Springer Link</source><creator>Khamsi, M. A.</creator><creatorcontrib>Khamsi, M. A.</creatorcontrib><description>Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the theory that developed following its publication is known as the metric fixed point theory. Over the last one hundred years, many people have tried to generalize the definition of a metric space. In this paper, we survey the most popular generalizations and we discuss the recent uptick in some generalizations and their impact in metric fixed point theory.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-015-0232-5</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of fixed point theory and applications, 2015-09, Vol.17 (3), p.455-475</ispartof><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273</citedby><cites>FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Khamsi, M. A.</creatorcontrib><title>Generalized metric spaces: A survey</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the theory that developed following its publication is known as the metric fixed point theory. Over the last one hundred years, many people have tried to generalize the definition of a metric space. In this paper, we survey the most popular generalizations and we discuss the recent uptick in some generalizations and their impact in metric fixed point theory.</description><subject>Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEURYMoWKs_wN2A6-h7-a67UrQKhW7qOmQyLzKlnZakFeqvd8qIS1fvLt653MPYPcIjAtingmid4oCag5CC6ws2QmOQW6vM5V-W7prdlLIGMCDQjtjDnDrKYdN-U1Nt6ZDbWJV9iFSeq2lVjvmLTrfsKoVNobvfO2Yfry-r2RtfLOfvs-mCRynwwE3tglMxNVGii2FiU4MERmgdTEhkBKggtWy0rpOsg6hTEjRRmpxWloSVY4ZDb8y7UjIlv8_tNuSTR_BnSz9Y-t7Sny297hkxMKX_7T4p-_XumLt-5j_QD1GyVBs</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Khamsi, M. A.</creator><general>Springer Basel</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>Generalized metric spaces: A survey</title><author>Khamsi, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khamsi, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khamsi, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized metric spaces: A survey</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>17</volume><issue>3</issue><spage>455</spage><epage>475</epage><pages>455-475</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>Banach’s contraction mapping principle is remarkable in its simplicity, yet it is perhaps the most widely applied fixed point theorem in all of analysis with special applications to the theory of differential and integral equations. Because the underlined space of this theorem is a metric space, the theory that developed following its publication is known as the metric fixed point theory. Over the last one hundred years, many people have tried to generalize the definition of a metric space. In this paper, we survey the most popular generalizations and we discuss the recent uptick in some generalizations and their impact in metric fixed point theory.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s11784-015-0232-5</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-7738 |
ispartof | Journal of fixed point theory and applications, 2015-09, Vol.17 (3), p.455-475 |
issn | 1661-7738 1661-7746 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11784_015_0232_5 |
source | Springer Link |
subjects | Analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics |
title | Generalized metric spaces: A survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20metric%20spaces:%20A%20survey&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Khamsi,%20M.%20A.&rft.date=2015-09-01&rft.volume=17&rft.issue=3&rft.spage=455&rft.epage=475&rft.pages=455-475&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-015-0232-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s11784_015_0232_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-6b8a84cfdc318ca97fd1e06255a6afe6204a353d55bf3ba2bff2e945e8547e273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |