Loading…
Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings
This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this proper...
Saved in:
Published in: | Journal of fixed point theory and applications 2021-08, Vol.23 (3), Article 40 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Journal of fixed point theory and applications |
container_volume | 23 |
creator | Benavides, T. Domínguez Ramírez, P. Lorenzo |
description | This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces. |
doi_str_mv | 10.1007/s11784-021-00876-y |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11784_021_00876_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11784_021_00876_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6z8AwFP7MbuElW8pCI2sLYce1JSEjuyk6r9ewxFLFnN696r0SHkGtgNMCZvE4BUomAlFIwpWRWHEzKDqoJCSlGd_vVcnZOLlLaMVVkrZ-TzBU2aIiYaGuqDt6EfjB09pkRbT_vgps5EmvIya4x3tGn36OgQWj_S8QNDxD7RJkTaT93Y7kw35XNOwv1gfGp3SHszDK3fpEty1pgu4dVvnZP3h_u31VOxfn18Xt2tC8v5YiygtrZGhQLAKZMHZXlZciWlc0sQzNSAWDFhuRByCcAFLJUSFXN2oZxkfE7KY66NIaWIjR5i25t40MD0Ny59xKUzAv2DSx-yiR9NKYv9BqPehin6_Od_ri_WDnEG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</title><source>Springer Nature</source><creator>Benavides, T. Domínguez ; Ramírez, P. Lorenzo</creator><creatorcontrib>Benavides, T. Domínguez ; Ramírez, P. Lorenzo</creatorcontrib><description>This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-021-00876-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of fixed point theory and applications, 2021-08, Vol.23 (3), Article 40</ispartof><rights>The Author(s) 2021. corrected publication 16 October 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</citedby><cites>FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</cites><orcidid>0000-0002-9373-7751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benavides, T. Domínguez</creatorcontrib><creatorcontrib>Ramírez, P. Lorenzo</creatorcontrib><title>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.</description><subject>Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6z8AwFP7MbuElW8pCI2sLYce1JSEjuyk6r9ewxFLFnN696r0SHkGtgNMCZvE4BUomAlFIwpWRWHEzKDqoJCSlGd_vVcnZOLlLaMVVkrZ-TzBU2aIiYaGuqDt6EfjB09pkRbT_vgps5EmvIya4x3tGn36OgQWj_S8QNDxD7RJkTaT93Y7kw35XNOwv1gfGp3SHszDK3fpEty1pgu4dVvnZP3h_u31VOxfn18Xt2tC8v5YiygtrZGhQLAKZMHZXlZciWlc0sQzNSAWDFhuRByCcAFLJUSFXN2oZxkfE7KY66NIaWIjR5i25t40MD0Ny59xKUzAv2DSx-yiR9NKYv9BqPehin6_Od_ri_WDnEG</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Benavides, T. Domínguez</creator><creator>Ramírez, P. Lorenzo</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9373-7751</orcidid></search><sort><creationdate>20210801</creationdate><title>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</title><author>Benavides, T. Domínguez ; Ramírez, P. Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benavides, T. Domínguez</creatorcontrib><creatorcontrib>Ramírez, P. Lorenzo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benavides, T. Domínguez</au><au>Ramírez, P. Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><artnum>40</artnum><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11784-021-00876-y</doi><orcidid>https://orcid.org/0000-0002-9373-7751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-7738 |
ispartof | Journal of fixed point theory and applications, 2021-08, Vol.23 (3), Article 40 |
issn | 1661-7738 1661-7746 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11784_021_00876_y |
source | Springer Nature |
subjects | Analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics |
title | Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measures%20of%20noncompactness%20in%20modular%20spaces%20and%20fixed%20point%20theorems%20for%20multivalued%20nonexpansive%20mappings&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Benavides,%20T.%20Dom%C3%ADnguez&rft.date=2021-08-01&rft.volume=23&rft.issue=3&rft.artnum=40&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-021-00876-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s11784_021_00876_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |