Loading…

Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings

This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this proper...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fixed point theory and applications 2021-08, Vol.23 (3), Article 40
Main Authors: Benavides, T. Domínguez, Ramírez, P. Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703
cites cdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703
container_end_page
container_issue 3
container_start_page
container_title Journal of fixed point theory and applications
container_volume 23
creator Benavides, T. Domínguez
Ramírez, P. Lorenzo
description This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.
doi_str_mv 10.1007/s11784-021-00876-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11784_021_00876_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11784_021_00876_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6z8AwFP7MbuElW8pCI2sLYce1JSEjuyk6r9ewxFLFnN696r0SHkGtgNMCZvE4BUomAlFIwpWRWHEzKDqoJCSlGd_vVcnZOLlLaMVVkrZ-TzBU2aIiYaGuqDt6EfjB09pkRbT_vgps5EmvIya4x3tGn36OgQWj_S8QNDxD7RJkTaT93Y7kw35XNOwv1gfGp3SHszDK3fpEty1pgu4dVvnZP3h_u31VOxfn18Xt2tC8v5YiygtrZGhQLAKZMHZXlZciWlc0sQzNSAWDFhuRByCcAFLJUSFXN2oZxkfE7KY66NIaWIjR5i25t40MD0Ny59xKUzAv2DSx-yiR9NKYv9BqPehin6_Od_ri_WDnEG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</title><source>Springer Nature</source><creator>Benavides, T. Domínguez ; Ramírez, P. Lorenzo</creator><creatorcontrib>Benavides, T. Domínguez ; Ramírez, P. Lorenzo</creatorcontrib><description>This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-021-00876-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of fixed point theory and applications, 2021-08, Vol.23 (3), Article 40</ispartof><rights>The Author(s) 2021. corrected publication 16 October 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</citedby><cites>FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</cites><orcidid>0000-0002-9373-7751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benavides, T. Domínguez</creatorcontrib><creatorcontrib>Ramírez, P. Lorenzo</creatorcontrib><title>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.</description><subject>Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6z8AwFP7MbuElW8pCI2sLYce1JSEjuyk6r9ewxFLFnN696r0SHkGtgNMCZvE4BUomAlFIwpWRWHEzKDqoJCSlGd_vVcnZOLlLaMVVkrZ-TzBU2aIiYaGuqDt6EfjB09pkRbT_vgps5EmvIya4x3tGn36OgQWj_S8QNDxD7RJkTaT93Y7kw35XNOwv1gfGp3SHszDK3fpEty1pgu4dVvnZP3h_u31VOxfn18Xt2tC8v5YiygtrZGhQLAKZMHZXlZciWlc0sQzNSAWDFhuRByCcAFLJUSFXN2oZxkfE7KY66NIaWIjR5i25t40MD0Ny59xKUzAv2DSx-yiR9NKYv9BqPehin6_Od_ri_WDnEG</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Benavides, T. Domínguez</creator><creator>Ramírez, P. Lorenzo</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9373-7751</orcidid></search><sort><creationdate>20210801</creationdate><title>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</title><author>Benavides, T. Domínguez ; Ramírez, P. Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benavides, T. Domínguez</creatorcontrib><creatorcontrib>Ramírez, P. Lorenzo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benavides, T. Domínguez</au><au>Ramírez, P. Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><artnum>40</artnum><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11784-021-00876-y</doi><orcidid>https://orcid.org/0000-0002-9373-7751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-7738
ispartof Journal of fixed point theory and applications, 2021-08, Vol.23 (3), Article 40
issn 1661-7738
1661-7746
language eng
recordid cdi_crossref_primary_10_1007_s11784_021_00876_y
source Springer Nature
subjects Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
title Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measures%20of%20noncompactness%20in%20modular%20spaces%20and%20fixed%20point%20theorems%20for%20multivalued%20nonexpansive%20mappings&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Benavides,%20T.%20Dom%C3%ADnguez&rft.date=2021-08-01&rft.volume=23&rft.issue=3&rft.artnum=40&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-021-00876-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s11784_021_00876_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-1bccbe8e411d8abcc8c3223877dd9140ab1ee604c3447911341988460dc58d703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true