Loading…

Degradation modes of crosslinked coatings exposed to photolytic environment

The objective of this study is to assess the degradation modes of crosslinked coatings exposed to photolytic environments. Three model crosslinked coatings were exposed in various ultraviolet environments. Atomic force microscopy and Fourier transform infrared spectroscopy were used in following nan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Coatings Technology and Research 2013, Vol.10 (1), p.1-14
Main Authors: Nguyen, Tinh, Gu, Xiaohong, Vanlandingham, Mark, Byrd, Eric, Ryntz, Rose, Martin, Jonathan W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study is to assess the degradation modes of crosslinked coatings exposed to photolytic environments. Three model crosslinked coatings were exposed in various ultraviolet environments. Atomic force microscopy and Fourier transform infrared spectroscopy were used in following nanoscale physical and chemical degradation during exposures. Results indicated that photodegradation of crosslinked coatings is a spatially localized (inhomogeneous) process in which nanometer-sized pits are initially formed; these pits deepen and enlarge with exposure. A conceptual model is proposed to explain the inhomogeneous degradation mode. The model proposes that nanosize “hydrophilic” domains are dispersed randomly with the highly crosslinked units. These hydrophilic domains, which are energetically preferred, comprise polar, unreacted and partially polymerized molecules, chromophores, and other additives. Photodegradation initiates at degradation-susceptible hydrophilic domains spreading to surrounding areas contiguous with the initiation site.
ISSN:1547-0091
1935-3804
DOI:10.1007/s11998-012-9455-1