Loading…

Quantification and prediction of visually perceived specular gloss at three illumination/viewing geometries

In the present study, attempts were made to clarify the existence of a correlation between visually perceived and instrumentally measured specular gloss of a series of achromatic samples. To this end, seven achromatic physical scales of specular gloss each consisting of 10 or 11 samples were prepare...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Coatings Technology and Research 2016-03, Vol.13 (2), p.239-256
Main Authors: Mirjalili, F., Moradian, S., Ameri, F., Amani Tehran, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, attempts were made to clarify the existence of a correlation between visually perceived and instrumentally measured specular gloss of a series of achromatic samples. To this end, seven achromatic physical scales of specular gloss each consisting of 10 or 11 samples were prepared using lithographically printed black, white, and five in between gray papers. The samples were visually assessed and subsequently quantified in terms of a visually uniform color constant lightness scale, by a panel of 14 observers in an especially designed unidirectional light compartment at three illumination/observation geometries, namely 20°/20°, 60°/60°, and 85°/85°. Four statistical parameters were utilized to determine the correlation between visually perceived and instrumentally measured specular gloss. The results show that the instrumental 60°/60° geometry is capable of efficiently quantifying the equivalent specular gloss as perceived by a human observer. Surprisingly, it was also possible to accurately predict the visually quantified specular gloss both at the 20° and the 85° geometries by the aid of applying special linear relationships derived from the instrumentally measured specular gloss of the 60° geometry.
ISSN:1547-0091
1935-3804
DOI:10.1007/s11998-015-9756-2