Loading…
Study on a novel composite coating based on PDMS doped with modified graphene oxide
The low surface activity of graphene oxide (GO) stemming from its large conjugated electronic structure can easily affect the dispersion behavior of GO-based polymer matrices. This significantly undermines the properties of the resulting composite materials. Therefore, in order to increase the GO su...
Saved in:
Published in: | Journal of Coatings Technology and Research 2018-03, Vol.15 (2), p.375-383 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The low surface activity of graphene oxide (GO) stemming from its large conjugated electronic structure can easily affect the dispersion behavior of GO-based polymer matrices. This significantly undermines the properties of the resulting composite materials. Therefore, in order to increase the GO surface activity for use in polymer-based composites, GO was modified using silane coupling agent which was then doped into polydimethylsiloxane (PDMS) polymer to prepare novel paints by sol–gel reaction strategy. The subsequent novel composite coatings based on PDMS/modified GO (mGO) were finally cured with tetraethoxysilane as the hardening agent in the presence of dibutyltin dilaurate catalyst. The effect of doping mGO into PDMS polymer was systematically studied using infrared spectroscopy, micro-Raman spectroscopy, TEM, SEM, XRD, TGA, mechanical test, thermal conductivity test, and the erosion resistance test. It was concluded that the phase compatibility between GO and PDMS was enhanced due to the new interconnecting chemical bonds brought about by the mGO in the composite. |
---|---|
ISSN: | 1547-0091 1935-3804 |
DOI: | 10.1007/s11998-017-9991-9 |