Loading…

Multilayer OLEDs with four slot die-coated layers

For the first time, multilayer OLEDs with four solution-processed layers are fabricated step-by-step using slot die coating. A suitable choice of coating parameters and fluid formulation enables the application of different material classes as large-area homogeneous layers with thicknesses in the na...

Full description

Saved in:
Bibliographic Details
Published in:JCT research 2019-11, Vol.16 (6), p.1643-1652
Main Authors: Merklein, Lisa, Mink, Marvin, Kourkoulos, Dimitrios, Ulber, Benjamin, Raupp, Sebastian M., Meerholz, Klaus, Scharfer, Philip, Schabel, Wilhelm
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the first time, multilayer OLEDs with four solution-processed layers are fabricated step-by-step using slot die coating. A suitable choice of coating parameters and fluid formulation enables the application of different material classes as large-area homogeneous layers with thicknesses in the nanometer range. The AFM measurements of the slot die-coated layers consisting of small molecules showed R a values of 0.21–0.28 nm, less than previously reported in the literature. Based on a two-layer reference OLED consisting of a HIL and EML, the stack architecture is first extended by a crosslinked HTL. These three-layer OLEDs with a crosslinked HTL achieve 70% higher efficiency, compared to that of the reference devices, thus assuming successfully separated layers. In a further step, an additional ETL is applied via the orthogonal solvent approach to obtain four solution-processed layers. The averaged power efficiency of the four-layer OLEDs is increased by a factor of 2.2 compared to the reference OLEDs up to a value of 3.5 lm/W. Based on these results, it can be assumed that both approaches, the use of orthogonal solvents as well as the application of crosslinkable materials, have been successfully combined to fabricate multilayer OLEDs with four separated slot die-coated layers.
ISSN:1547-0091
1935-3804
2168-8028
DOI:10.1007/s11998-019-00225-2