Loading…
Water vapor transmission properties of acrylic organic coatings
In this work, we evaluate the water vapor transmission rate (WVTR), the permeability ( P ), solubility ( S ), and diffusion ( D ) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponentia...
Saved in:
Published in: | JCT research 2021-03, Vol.18 (2), p.523-534 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03 |
container_end_page | 534 |
container_issue | 2 |
container_start_page | 523 |
container_title | JCT research |
container_volume | 18 |
creator | Kovács, Réka Lilla Daróczi, Lajos Barkóczy, Péter Baradács, Eszter Bakonyi, Eszter Kovács, Szilvia Erdélyi, Zoltán |
description | In this work, we evaluate the water vapor transmission rate (WVTR), the permeability (
P
), solubility (
S
), and diffusion (
D
) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data:
D
B
44
=
35.2
cm
2
s
-
1
exp
-
25
kJ mol
-
1
/
RT
;
D
B
72
=
9.5
cm
2
s
-
1
exp
-
23
kJ mol
-
1
/
RT
;
D
Incralac
=
622.8
cm
2
s
-
1
exp
-
28
kJ mol
-
1
/
RT
. These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability (
P, S, D
) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless,
P
,
S,
and
D
can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m
−2
day
−1
as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m
−2
day
−1
, respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests. |
doi_str_mv | 10.1007/s11998-020-00421-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11998_020_00421_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz242J5GiVSh4UTyGJJstW9rNmtkK_famruDN0xuY994MP0KuGdwyAHWHjGldU-BAASRntDwhM6ZFSUUN8jTPpVR5pdk5uUDcAHBV12JG7j_sGFLxZYeYijHZHncdYhf7YkhxCGnsAhaxLaxPh23ni5jWts_qox27fo2X5Ky1WwxXvzon70-Pb4tnunpdviweVtRLgJFKJ20lvLZKOd9KYbVuWqFdLRoHNfeNthyUqxpwAQLnpVZSsbYKrgJwDsSc3Ey9-a3PfcDRbOI-9fmk4SUIpoSAMrv45PIpIqbQmiF1O5sOhoE5gjITKJNBmR9Q5hgSUwizuV-H9Ff9T-obXN9rlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173305</pqid></control><display><type>article</type><title>Water vapor transmission properties of acrylic organic coatings</title><source>Springer Link</source><creator>Kovács, Réka Lilla ; Daróczi, Lajos ; Barkóczy, Péter ; Baradács, Eszter ; Bakonyi, Eszter ; Kovács, Szilvia ; Erdélyi, Zoltán</creator><creatorcontrib>Kovács, Réka Lilla ; Daróczi, Lajos ; Barkóczy, Péter ; Baradács, Eszter ; Bakonyi, Eszter ; Kovács, Szilvia ; Erdélyi, Zoltán</creatorcontrib><description>In this work, we evaluate the water vapor transmission rate (WVTR), the permeability (
P
), solubility (
S
), and diffusion (
D
) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data:
D
B
44
=
35.2
cm
2
s
-
1
exp
-
25
kJ mol
-
1
/
RT
;
D
B
72
=
9.5
cm
2
s
-
1
exp
-
23
kJ mol
-
1
/
RT
;
D
Incralac
=
622.8
cm
2
s
-
1
exp
-
28
kJ mol
-
1
/
RT
. These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability (
P, S, D
) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless,
P
,
S,
and
D
can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m
−2
day
−1
as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m
−2
day
−1
, respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.</description><identifier>ISSN: 1547-0091</identifier><identifier>EISSN: 1935-3804</identifier><identifier>EISSN: 2168-8028</identifier><identifier>DOI: 10.1007/s11998-020-00421-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry and Materials Science ; Corrosion and Coatings ; Corrosion inhibitors ; Corrosion tests ; Diffusion coatings ; Diffusion rate ; Industrial Chemistry/Chemical Engineering ; Materials conservation ; Materials Science ; Organic coatings ; Permeability ; Polymer Sciences ; Protective coatings ; Resins ; Retarders ; Substrates ; Surfaces and Interfaces ; Thin Films ; Transmitters ; Tribology ; Water vapor</subject><ispartof>JCT research, 2021-03, Vol.18 (2), p.523-534</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</citedby><cites>FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kovács, Réka Lilla</creatorcontrib><creatorcontrib>Daróczi, Lajos</creatorcontrib><creatorcontrib>Barkóczy, Péter</creatorcontrib><creatorcontrib>Baradács, Eszter</creatorcontrib><creatorcontrib>Bakonyi, Eszter</creatorcontrib><creatorcontrib>Kovács, Szilvia</creatorcontrib><creatorcontrib>Erdélyi, Zoltán</creatorcontrib><title>Water vapor transmission properties of acrylic organic coatings</title><title>JCT research</title><addtitle>J Coat Technol Res</addtitle><description>In this work, we evaluate the water vapor transmission rate (WVTR), the permeability (
P
), solubility (
S
), and diffusion (
D
) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data:
D
B
44
=
35.2
cm
2
s
-
1
exp
-
25
kJ mol
-
1
/
RT
;
D
B
72
=
9.5
cm
2
s
-
1
exp
-
23
kJ mol
-
1
/
RT
;
D
Incralac
=
622.8
cm
2
s
-
1
exp
-
28
kJ mol
-
1
/
RT
. These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability (
P, S, D
) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless,
P
,
S,
and
D
can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m
−2
day
−1
as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m
−2
day
−1
, respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.</description><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Corrosion inhibitors</subject><subject>Corrosion tests</subject><subject>Diffusion coatings</subject><subject>Diffusion rate</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials conservation</subject><subject>Materials Science</subject><subject>Organic coatings</subject><subject>Permeability</subject><subject>Polymer Sciences</subject><subject>Protective coatings</subject><subject>Resins</subject><subject>Retarders</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transmitters</subject><subject>Tribology</subject><subject>Water vapor</subject><issn>1547-0091</issn><issn>1935-3804</issn><issn>2168-8028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz242J5GiVSh4UTyGJJstW9rNmtkK_famruDN0xuY994MP0KuGdwyAHWHjGldU-BAASRntDwhM6ZFSUUN8jTPpVR5pdk5uUDcAHBV12JG7j_sGFLxZYeYijHZHncdYhf7YkhxCGnsAhaxLaxPh23ni5jWts_qox27fo2X5Ky1WwxXvzon70-Pb4tnunpdviweVtRLgJFKJ20lvLZKOd9KYbVuWqFdLRoHNfeNthyUqxpwAQLnpVZSsbYKrgJwDsSc3Ey9-a3PfcDRbOI-9fmk4SUIpoSAMrv45PIpIqbQmiF1O5sOhoE5gjITKJNBmR9Q5hgSUwizuV-H9Ff9T-obXN9rlA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kovács, Réka Lilla</creator><creator>Daróczi, Lajos</creator><creator>Barkóczy, Péter</creator><creator>Baradács, Eszter</creator><creator>Bakonyi, Eszter</creator><creator>Kovács, Szilvia</creator><creator>Erdélyi, Zoltán</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Water vapor transmission properties of acrylic organic coatings</title><author>Kovács, Réka Lilla ; Daróczi, Lajos ; Barkóczy, Péter ; Baradács, Eszter ; Bakonyi, Eszter ; Kovács, Szilvia ; Erdélyi, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Corrosion inhibitors</topic><topic>Corrosion tests</topic><topic>Diffusion coatings</topic><topic>Diffusion rate</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials conservation</topic><topic>Materials Science</topic><topic>Organic coatings</topic><topic>Permeability</topic><topic>Polymer Sciences</topic><topic>Protective coatings</topic><topic>Resins</topic><topic>Retarders</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transmitters</topic><topic>Tribology</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovács, Réka Lilla</creatorcontrib><creatorcontrib>Daróczi, Lajos</creatorcontrib><creatorcontrib>Barkóczy, Péter</creatorcontrib><creatorcontrib>Baradács, Eszter</creatorcontrib><creatorcontrib>Bakonyi, Eszter</creatorcontrib><creatorcontrib>Kovács, Szilvia</creatorcontrib><creatorcontrib>Erdélyi, Zoltán</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>JCT research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovács, Réka Lilla</au><au>Daróczi, Lajos</au><au>Barkóczy, Péter</au><au>Baradács, Eszter</au><au>Bakonyi, Eszter</au><au>Kovács, Szilvia</au><au>Erdélyi, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vapor transmission properties of acrylic organic coatings</atitle><jtitle>JCT research</jtitle><stitle>J Coat Technol Res</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>523</spage><epage>534</epage><pages>523-534</pages><issn>1547-0091</issn><eissn>1935-3804</eissn><eissn>2168-8028</eissn><abstract>In this work, we evaluate the water vapor transmission rate (WVTR), the permeability (
P
), solubility (
S
), and diffusion (
D
) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data:
D
B
44
=
35.2
cm
2
s
-
1
exp
-
25
kJ mol
-
1
/
RT
;
D
B
72
=
9.5
cm
2
s
-
1
exp
-
23
kJ mol
-
1
/
RT
;
D
Incralac
=
622.8
cm
2
s
-
1
exp
-
28
kJ mol
-
1
/
RT
. These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability (
P, S, D
) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless,
P
,
S,
and
D
can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m
−2
day
−1
as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m
−2
day
−1
, respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11998-020-00421-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-0091 |
ispartof | JCT research, 2021-03, Vol.18 (2), p.523-534 |
issn | 1547-0091 1935-3804 2168-8028 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11998_020_00421_5 |
source | Springer Link |
subjects | Chemistry and Materials Science Corrosion and Coatings Corrosion inhibitors Corrosion tests Diffusion coatings Diffusion rate Industrial Chemistry/Chemical Engineering Materials conservation Materials Science Organic coatings Permeability Polymer Sciences Protective coatings Resins Retarders Substrates Surfaces and Interfaces Thin Films Transmitters Tribology Water vapor |
title | Water vapor transmission properties of acrylic organic coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vapor%20transmission%20properties%20of%20acrylic%20organic%20coatings&rft.jtitle=JCT%20research&rft.au=Kov%C3%A1cs,%20R%C3%A9ka%20Lilla&rft.date=2021-03-01&rft.volume=18&rft.issue=2&rft.spage=523&rft.epage=534&rft.pages=523-534&rft.issn=1547-0091&rft.eissn=1935-3804&rft_id=info:doi/10.1007/s11998-020-00421-5&rft_dat=%3Cproquest_cross%3E2503173305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503173305&rft_id=info:pmid/&rfr_iscdi=true |