Loading…

Water vapor transmission properties of acrylic organic coatings

In this work, we evaluate the water vapor transmission rate (WVTR), the permeability ( P ), solubility ( S ), and diffusion ( D ) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponentia...

Full description

Saved in:
Bibliographic Details
Published in:JCT research 2021-03, Vol.18 (2), p.523-534
Main Authors: Kovács, Réka Lilla, Daróczi, Lajos, Barkóczy, Péter, Baradács, Eszter, Bakonyi, Eszter, Kovács, Szilvia, Erdélyi, Zoltán
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03
cites cdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03
container_end_page 534
container_issue 2
container_start_page 523
container_title JCT research
container_volume 18
creator Kovács, Réka Lilla
Daróczi, Lajos
Barkóczy, Péter
Baradács, Eszter
Bakonyi, Eszter
Kovács, Szilvia
Erdélyi, Zoltán
description In this work, we evaluate the water vapor transmission rate (WVTR), the permeability ( P ), solubility ( S ), and diffusion ( D ) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data: D B 44 = 35.2 cm 2 s - 1 exp - 25 kJ mol - 1 / RT ; D B 72 = 9.5 cm 2 s - 1 exp - 23 kJ mol - 1 / RT ; D Incralac = 622.8 cm 2 s - 1 exp - 28 kJ mol - 1 / RT . These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability ( P, S, D ) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless, P , S, and D can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m −2 day −1 as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m −2  day −1 , respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.
doi_str_mv 10.1007/s11998-020-00421-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11998_020_00421_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz242J5GiVSh4UTyGJJstW9rNmtkK_famruDN0xuY994MP0KuGdwyAHWHjGldU-BAASRntDwhM6ZFSUUN8jTPpVR5pdk5uUDcAHBV12JG7j_sGFLxZYeYijHZHncdYhf7YkhxCGnsAhaxLaxPh23ni5jWts_qox27fo2X5Ky1WwxXvzon70-Pb4tnunpdviweVtRLgJFKJ20lvLZKOd9KYbVuWqFdLRoHNfeNthyUqxpwAQLnpVZSsbYKrgJwDsSc3Ey9-a3PfcDRbOI-9fmk4SUIpoSAMrv45PIpIqbQmiF1O5sOhoE5gjITKJNBmR9Q5hgSUwizuV-H9Ff9T-obXN9rlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173305</pqid></control><display><type>article</type><title>Water vapor transmission properties of acrylic organic coatings</title><source>Springer Link</source><creator>Kovács, Réka Lilla ; Daróczi, Lajos ; Barkóczy, Péter ; Baradács, Eszter ; Bakonyi, Eszter ; Kovács, Szilvia ; Erdélyi, Zoltán</creator><creatorcontrib>Kovács, Réka Lilla ; Daróczi, Lajos ; Barkóczy, Péter ; Baradács, Eszter ; Bakonyi, Eszter ; Kovács, Szilvia ; Erdélyi, Zoltán</creatorcontrib><description>In this work, we evaluate the water vapor transmission rate (WVTR), the permeability ( P ), solubility ( S ), and diffusion ( D ) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data: D B 44 = 35.2 cm 2 s - 1 exp - 25 kJ mol - 1 / RT ; D B 72 = 9.5 cm 2 s - 1 exp - 23 kJ mol - 1 / RT ; D Incralac = 622.8 cm 2 s - 1 exp - 28 kJ mol - 1 / RT . These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability ( P, S, D ) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless, P , S, and D can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m −2 day −1 as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m −2  day −1 , respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.</description><identifier>ISSN: 1547-0091</identifier><identifier>EISSN: 1935-3804</identifier><identifier>EISSN: 2168-8028</identifier><identifier>DOI: 10.1007/s11998-020-00421-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry and Materials Science ; Corrosion and Coatings ; Corrosion inhibitors ; Corrosion tests ; Diffusion coatings ; Diffusion rate ; Industrial Chemistry/Chemical Engineering ; Materials conservation ; Materials Science ; Organic coatings ; Permeability ; Polymer Sciences ; Protective coatings ; Resins ; Retarders ; Substrates ; Surfaces and Interfaces ; Thin Films ; Transmitters ; Tribology ; Water vapor</subject><ispartof>JCT research, 2021-03, Vol.18 (2), p.523-534</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</citedby><cites>FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kovács, Réka Lilla</creatorcontrib><creatorcontrib>Daróczi, Lajos</creatorcontrib><creatorcontrib>Barkóczy, Péter</creatorcontrib><creatorcontrib>Baradács, Eszter</creatorcontrib><creatorcontrib>Bakonyi, Eszter</creatorcontrib><creatorcontrib>Kovács, Szilvia</creatorcontrib><creatorcontrib>Erdélyi, Zoltán</creatorcontrib><title>Water vapor transmission properties of acrylic organic coatings</title><title>JCT research</title><addtitle>J Coat Technol Res</addtitle><description>In this work, we evaluate the water vapor transmission rate (WVTR), the permeability ( P ), solubility ( S ), and diffusion ( D ) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data: D B 44 = 35.2 cm 2 s - 1 exp - 25 kJ mol - 1 / RT ; D B 72 = 9.5 cm 2 s - 1 exp - 23 kJ mol - 1 / RT ; D Incralac = 622.8 cm 2 s - 1 exp - 28 kJ mol - 1 / RT . These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability ( P, S, D ) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless, P , S, and D can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m −2 day −1 as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m −2  day −1 , respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.</description><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Corrosion inhibitors</subject><subject>Corrosion tests</subject><subject>Diffusion coatings</subject><subject>Diffusion rate</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials conservation</subject><subject>Materials Science</subject><subject>Organic coatings</subject><subject>Permeability</subject><subject>Polymer Sciences</subject><subject>Protective coatings</subject><subject>Resins</subject><subject>Retarders</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transmitters</subject><subject>Tribology</subject><subject>Water vapor</subject><issn>1547-0091</issn><issn>1935-3804</issn><issn>2168-8028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz242J5GiVSh4UTyGJJstW9rNmtkK_famruDN0xuY994MP0KuGdwyAHWHjGldU-BAASRntDwhM6ZFSUUN8jTPpVR5pdk5uUDcAHBV12JG7j_sGFLxZYeYijHZHncdYhf7YkhxCGnsAhaxLaxPh23ni5jWts_qox27fo2X5Ky1WwxXvzon70-Pb4tnunpdviweVtRLgJFKJ20lvLZKOd9KYbVuWqFdLRoHNfeNthyUqxpwAQLnpVZSsbYKrgJwDsSc3Ey9-a3PfcDRbOI-9fmk4SUIpoSAMrv45PIpIqbQmiF1O5sOhoE5gjITKJNBmR9Q5hgSUwizuV-H9Ff9T-obXN9rlA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kovács, Réka Lilla</creator><creator>Daróczi, Lajos</creator><creator>Barkóczy, Péter</creator><creator>Baradács, Eszter</creator><creator>Bakonyi, Eszter</creator><creator>Kovács, Szilvia</creator><creator>Erdélyi, Zoltán</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Water vapor transmission properties of acrylic organic coatings</title><author>Kovács, Réka Lilla ; Daróczi, Lajos ; Barkóczy, Péter ; Baradács, Eszter ; Bakonyi, Eszter ; Kovács, Szilvia ; Erdélyi, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Corrosion inhibitors</topic><topic>Corrosion tests</topic><topic>Diffusion coatings</topic><topic>Diffusion rate</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials conservation</topic><topic>Materials Science</topic><topic>Organic coatings</topic><topic>Permeability</topic><topic>Polymer Sciences</topic><topic>Protective coatings</topic><topic>Resins</topic><topic>Retarders</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transmitters</topic><topic>Tribology</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovács, Réka Lilla</creatorcontrib><creatorcontrib>Daróczi, Lajos</creatorcontrib><creatorcontrib>Barkóczy, Péter</creatorcontrib><creatorcontrib>Baradács, Eszter</creatorcontrib><creatorcontrib>Bakonyi, Eszter</creatorcontrib><creatorcontrib>Kovács, Szilvia</creatorcontrib><creatorcontrib>Erdélyi, Zoltán</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>JCT research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovács, Réka Lilla</au><au>Daróczi, Lajos</au><au>Barkóczy, Péter</au><au>Baradács, Eszter</au><au>Bakonyi, Eszter</au><au>Kovács, Szilvia</au><au>Erdélyi, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water vapor transmission properties of acrylic organic coatings</atitle><jtitle>JCT research</jtitle><stitle>J Coat Technol Res</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>523</spage><epage>534</epage><pages>523-534</pages><issn>1547-0091</issn><eissn>1935-3804</eissn><eissn>2168-8028</eissn><abstract>In this work, we evaluate the water vapor transmission rate (WVTR), the permeability ( P ), solubility ( S ), and diffusion ( D ) coefficients of Paraloid B44, Paraloid B72, and Incralac coatings in the temperature range of 5–35°C. The Arrhenius function—diffusion activation energy and preexponential factor—has also been determined from the data: D B 44 = 35.2 cm 2 s - 1 exp - 25 kJ mol - 1 / RT ; D B 72 = 9.5 cm 2 s - 1 exp - 23 kJ mol - 1 / RT ; D Incralac = 622.8 cm 2 s - 1 exp - 28 kJ mol - 1 / RT . These resins are important coating materials, for example, for conservators to protect metallic artifacts, such as statues, against corrosion. Despite Paraloid B44 and B72 resins being considered as reference materials in conservation practice, that is, new coating materials (either water vapor retarders or transmitters) are often compared to them, there are no comprehensive data for the quantities describing the vapor permeability ( P, S, D ) of these materials. The measurements are based on the ISO cup-method using substrate/coating composite samples. The strength of this technique is that it can also be used when the coating is non-self-supporting; nevertheless, P , S, and D can be deduced for the coating layer itself, and it seems to be a standardizable procedure for comparative performance testing of coating materials. Paraloid B72 layers exhibited higher WVTRs—from 39 to 315 g m −2 day −1 as the temperature increased from 5 to 35°C—compared to Paraloid B44 and Incralac coatings—from 17 to 190 g m −2  day −1 , respectively. The transmission rate parameters were also compared to the results of corrosion tests. Incralac was the most effective corrosion inhibitor, and the performance of the B44 was better than the B72, which is in good agreement with the transmission rate tests.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11998-020-00421-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1547-0091
ispartof JCT research, 2021-03, Vol.18 (2), p.523-534
issn 1547-0091
1935-3804
2168-8028
language eng
recordid cdi_crossref_primary_10_1007_s11998_020_00421_5
source Springer Link
subjects Chemistry and Materials Science
Corrosion and Coatings
Corrosion inhibitors
Corrosion tests
Diffusion coatings
Diffusion rate
Industrial Chemistry/Chemical Engineering
Materials conservation
Materials Science
Organic coatings
Permeability
Polymer Sciences
Protective coatings
Resins
Retarders
Substrates
Surfaces and Interfaces
Thin Films
Transmitters
Tribology
Water vapor
title Water vapor transmission properties of acrylic organic coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20vapor%20transmission%20properties%20of%20acrylic%20organic%20coatings&rft.jtitle=JCT%20research&rft.au=Kov%C3%A1cs,%20R%C3%A9ka%20Lilla&rft.date=2021-03-01&rft.volume=18&rft.issue=2&rft.spage=523&rft.epage=534&rft.pages=523-534&rft.issn=1547-0091&rft.eissn=1935-3804&rft_id=info:doi/10.1007/s11998-020-00421-5&rft_dat=%3Cproquest_cross%3E2503173305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-4b4a63c9a77bcf43a99df39b83db082cd9a207b6d0be0e22597471f6eb600bb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503173305&rft_id=info:pmid/&rfr_iscdi=true