Loading…

Overactivation of NF-κB impairs insulin sensitivity and mediates palmitate-induced insulin resistance in C2C12 skeletal muscle cells

Lipid-induced insulin resistance is associated with inflammatory state in epidemiological studies. However, it is still unclear whether the activation of NF-κB, a pivotal transcription factor of inflammation, plays a crucial role in mediating skeletal muscle insulin resistance. This study addressed...

Full description

Saved in:
Bibliographic Details
Published in:Endocrine 2010-02, Vol.37 (1), p.157-166
Main Authors: Zhang, Jingwen, Wu, Wen, Li, Dongfeng, Guo, Ying, Ding, Helin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lipid-induced insulin resistance is associated with inflammatory state in epidemiological studies. However, it is still unclear whether the activation of NF-κB, a pivotal transcription factor of inflammation, plays a crucial role in mediating skeletal muscle insulin resistance. This study addressed what was the role of NF-κB in lipid-induced insulin resistance and whether NF-κB activation was sufficient to cause insulin resistance in C2C12 myotubes. A 16 h exposure of myotubes to palmitate reduced net insulin-stimulated glucose uptake by 48%, GLUT4 translocation by 52%, Akt phosphorylation by 54%, induced a 1.8-fold increase in insulin-stimulated insulin receptor substrate (IRS) phosphorylation, and doubled NF-κB activation. Myotubes transfected with NF-κB p65 siRNA for 24 h and followed by a treatment with palmitate for 16 h efficiently blocked NF-κB activation, and prevented the detrimental effects of palmitate on the metabolic actions of insulin. Transfection of myotubes with I-κBα siRNA for 24 h also led to a twofold induction of NF-κB activation, and reduced net insulin-stimulated glucose uptake by 30%, GLUT4 translocation by 35%, Akt phosphorylation by 31%, induced a 0.7-fold increase in insulin-stimulated IRS phosphorylation. These findings suggest that NF-κB overexpression per se is sufficient to impair insulin sensitivity and palmitate-induced insulin resistance is mediated by NF-κB in skeletal muscle cells.
ISSN:1355-008X
1559-0100
DOI:10.1007/s12020-009-9283-y