Loading…
On trees with total domination number equal to edge-vertex domination number plus one
An edge e ∈ E ( G ) dominates a vertex v ∈ V ( G ) if e is incident with v or e is incident with a vertex adjacent to v . An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is edge-vertex dominated by an edge of D . The edge-vertex domination number of a...
Saved in:
Published in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2016-05, Vol.126 (2), p.153-157 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-c8f38c3b178ba6850d402dd3ce3dbcd70bb82a37e354d3a267cd2f685c04acc03 |
---|---|
cites | |
container_end_page | 157 |
container_issue | 2 |
container_start_page | 153 |
container_title | Proceedings of the Indian Academy of Sciences. Mathematical sciences |
container_volume | 126 |
creator | KRISHNAKUMARI, B VENKATAKRISHNAN, Y B KRZYWKOWSKI, MARCIN |
description | An edge
e
∈
E
(
G
) dominates a vertex
v
∈
V
(
G
) if
e
is incident with
v
or
e
is incident with a vertex adjacent to
v
. An edge-vertex dominating set of a graph
G
is a set
D
of edges of
G
such that every vertex of
G
is edge-vertex dominated by an edge of
D
. The edge-vertex domination number of a graph
G
is the minimum cardinality of an edge-vertex dominating set of
G
. A subset
D
⊆
V
(
G
) is a total dominating set of
G
if every vertex of
G
has a neighbor in
D
. The total domination number of
G
is the minimum cardinality of a total dominating set of
G
. We characterize all trees with total domination number equal to edge-vertex domination number plus one. |
doi_str_mv | 10.1007/s12044-016-0267-6 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12044_016_0267_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12044_016_0267_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c8f38c3b178ba6850d402dd3ce3dbcd70bb82a37e354d3a267cd2f685c04acc03</originalsourceid><addsrcrecordid>eNp9kMlOAzEQRC0EEiHwAdz8A4b2kvHkiCI2KRIXcrY8dk-YKLGD7WH5exyFI-LUrVZVq-oRcs3hhgPo28wFKMWANwxEo1lzQiYw15Lppp2d1l3MJFNciXNykfMGgM-VbCZk9RJoSYiZfg7ljZZY7Jb6uBuCLUMMNIy7DhPF97HeS6To18g-MBX8-kO2346ZxoCX5Ky324xXv3NKVg_3r4sntnx5fF7cLZkTbVuYa3vZOtlx3Xa25gSvQHgvHUrfOa-h61phpUY5U17a2st50VehA2WdAzkl_PjXpZhzwt7s07Cz6dtwMAcu5sjFVC7mwMU01SOOnly1YY3JbOKYQo35j-kH0xRnaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On trees with total domination number equal to edge-vertex domination number plus one</title><source>Springer Link</source><creator>KRISHNAKUMARI, B ; VENKATAKRISHNAN, Y B ; KRZYWKOWSKI, MARCIN</creator><creatorcontrib>KRISHNAKUMARI, B ; VENKATAKRISHNAN, Y B ; KRZYWKOWSKI, MARCIN</creatorcontrib><description>An edge
e
∈
E
(
G
) dominates a vertex
v
∈
V
(
G
) if
e
is incident with
v
or
e
is incident with a vertex adjacent to
v
. An edge-vertex dominating set of a graph
G
is a set
D
of edges of
G
such that every vertex of
G
is edge-vertex dominated by an edge of
D
. The edge-vertex domination number of a graph
G
is the minimum cardinality of an edge-vertex dominating set of
G
. A subset
D
⊆
V
(
G
) is a total dominating set of
G
if every vertex of
G
has a neighbor in
D
. The total domination number of
G
is the minimum cardinality of a total dominating set of
G
. We characterize all trees with total domination number equal to edge-vertex domination number plus one.</description><identifier>ISSN: 0253-4142</identifier><identifier>EISSN: 0973-7685</identifier><identifier>DOI: 10.1007/s12044-016-0267-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2016-05, Vol.126 (2), p.153-157</ispartof><rights>Indian Academy of Sciences 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c8f38c3b178ba6850d402dd3ce3dbcd70bb82a37e354d3a267cd2f685c04acc03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>KRISHNAKUMARI, B</creatorcontrib><creatorcontrib>VENKATAKRISHNAN, Y B</creatorcontrib><creatorcontrib>KRZYWKOWSKI, MARCIN</creatorcontrib><title>On trees with total domination number equal to edge-vertex domination number plus one</title><title>Proceedings of the Indian Academy of Sciences. Mathematical sciences</title><addtitle>Proc Math Sci</addtitle><description>An edge
e
∈
E
(
G
) dominates a vertex
v
∈
V
(
G
) if
e
is incident with
v
or
e
is incident with a vertex adjacent to
v
. An edge-vertex dominating set of a graph
G
is a set
D
of edges of
G
such that every vertex of
G
is edge-vertex dominated by an edge of
D
. The edge-vertex domination number of a graph
G
is the minimum cardinality of an edge-vertex dominating set of
G
. A subset
D
⊆
V
(
G
) is a total dominating set of
G
if every vertex of
G
has a neighbor in
D
. The total domination number of
G
is the minimum cardinality of a total dominating set of
G
. We characterize all trees with total domination number equal to edge-vertex domination number plus one.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0253-4142</issn><issn>0973-7685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOAzEQRC0EEiHwAdz8A4b2kvHkiCI2KRIXcrY8dk-YKLGD7WH5exyFI-LUrVZVq-oRcs3hhgPo28wFKMWANwxEo1lzQiYw15Lppp2d1l3MJFNciXNykfMGgM-VbCZk9RJoSYiZfg7ljZZY7Jb6uBuCLUMMNIy7DhPF97HeS6To18g-MBX8-kO2346ZxoCX5Ky324xXv3NKVg_3r4sntnx5fF7cLZkTbVuYa3vZOtlx3Xa25gSvQHgvHUrfOa-h61phpUY5U17a2st50VehA2WdAzkl_PjXpZhzwt7s07Cz6dtwMAcu5sjFVC7mwMU01SOOnly1YY3JbOKYQo35j-kH0xRnaw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>KRISHNAKUMARI, B</creator><creator>VENKATAKRISHNAN, Y B</creator><creator>KRZYWKOWSKI, MARCIN</creator><general>Springer India</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160501</creationdate><title>On trees with total domination number equal to edge-vertex domination number plus one</title><author>KRISHNAKUMARI, B ; VENKATAKRISHNAN, Y B ; KRZYWKOWSKI, MARCIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c8f38c3b178ba6850d402dd3ce3dbcd70bb82a37e354d3a267cd2f685c04acc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KRISHNAKUMARI, B</creatorcontrib><creatorcontrib>VENKATAKRISHNAN, Y B</creatorcontrib><creatorcontrib>KRZYWKOWSKI, MARCIN</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KRISHNAKUMARI, B</au><au>VENKATAKRISHNAN, Y B</au><au>KRZYWKOWSKI, MARCIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On trees with total domination number equal to edge-vertex domination number plus one</atitle><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle><stitle>Proc Math Sci</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>126</volume><issue>2</issue><spage>153</spage><epage>157</epage><pages>153-157</pages><issn>0253-4142</issn><eissn>0973-7685</eissn><abstract>An edge
e
∈
E
(
G
) dominates a vertex
v
∈
V
(
G
) if
e
is incident with
v
or
e
is incident with a vertex adjacent to
v
. An edge-vertex dominating set of a graph
G
is a set
D
of edges of
G
such that every vertex of
G
is edge-vertex dominated by an edge of
D
. The edge-vertex domination number of a graph
G
is the minimum cardinality of an edge-vertex dominating set of
G
. A subset
D
⊆
V
(
G
) is a total dominating set of
G
if every vertex of
G
has a neighbor in
D
. The total domination number of
G
is the minimum cardinality of a total dominating set of
G
. We characterize all trees with total domination number equal to edge-vertex domination number plus one.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12044-016-0267-6</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4142 |
ispartof | Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2016-05, Vol.126 (2), p.153-157 |
issn | 0253-4142 0973-7685 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12044_016_0267_6 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | On trees with total domination number equal to edge-vertex domination number plus one |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20trees%20with%20total%20domination%20number%20equal%20to%20edge-vertex%20domination%20number%20plus%20one&rft.jtitle=Proceedings%20of%20the%20Indian%20Academy%20of%20Sciences.%20Mathematical%20sciences&rft.au=KRISHNAKUMARI,%20B&rft.date=2016-05-01&rft.volume=126&rft.issue=2&rft.spage=153&rft.epage=157&rft.pages=153-157&rft.issn=0253-4142&rft.eissn=0973-7685&rft_id=info:doi/10.1007/s12044-016-0267-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s12044_016_0267_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-c8f38c3b178ba6850d402dd3ce3dbcd70bb82a37e354d3a267cd2f685c04acc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |