Loading…

Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms

In this communication, a microstrip line fed dielectric resonator antenna is optimized using various Machine learning-based models. Different ML algorithms such as ANN (artificial neural network), KNN (K-Nearest Neighbors), XG Boost (extreme gradient boosting), Random Forest, and Decision Tree are u...

Full description

Saved in:
Bibliographic Details
Published in:Sadhana (Bangalore) 2022-11, Vol.47 (4), Article 226
Main Authors: Singh, Om, Bharamagoudra, Manjula R, Gupta, Harshit, Dwivedi, Ajay Kumar, Ranjan, Pinku, Sharma, Anand
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3
cites cdi_FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3
container_end_page
container_issue 4
container_start_page
container_title Sadhana (Bangalore)
container_volume 47
creator Singh, Om
Bharamagoudra, Manjula R
Gupta, Harshit
Dwivedi, Ajay Kumar
Ranjan, Pinku
Sharma, Anand
description In this communication, a microstrip line fed dielectric resonator antenna is optimized using various Machine learning-based models. Different ML algorithms such as ANN (artificial neural network), KNN (K-Nearest Neighbors), XG Boost (extreme gradient boosting), Random Forest, and Decision Tree are used to optimize the proposed antenna design within the frequency band 3.3–3.65 GHz. |S 11 | of the proposed antenna is predicted by using various ML algorithms. Dataset for the same is created through HFSS EM (Electromagnetic) simulator by varying the radius, height of DRA (Dielectric Resonator Antenna) as well as the width of microstrip line and conformal strip. Predicted results from all these models are quite close to the actual one except ANN. To overcome the problem of ANN, Knowledge-Based Neural Network techniques (KBNN) are implemented. All these ML algorithms are authenticated by practically constructing and measuring the proposed antenna. Fabricated antenna results are in good agreement with the values predicted by ML algorithms.
doi_str_mv 10.1007/s12046-022-01989-x
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12046_022_01989_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12046_022_01989_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFP-wOok6ebjKMUvqHjRc4j5aFN2syVJofrr3bUePHma4WWeYeZB6JrADQEQt4VQWPAGKG2AKKmawwmagRKsEVyI0z_9ObooZQtABUg2Q_ol2jyUmuMOdzF5HLzDLvrO2zGzOPsyJFOHjE2qPiWDh12NffwyNQ4J70tMa9wbu5nYzpucpsB06yHHuunLJToLpiv-6rfO0fvD_dvyqVm9Pj4v71aNpZTUxgIPKhjnGAcirWtDUIo5QaWkgUrWtu0HeCUkBSOJNFw6vmCtYIwYxVvD5oge907flOyD3uXYm_ypCehJkT4q0qMi_aNIH0aIHaEyDqe1z3o77HMa7_yP-gab7Wwv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms</title><source>Springer Nature</source><creator>Singh, Om ; Bharamagoudra, Manjula R ; Gupta, Harshit ; Dwivedi, Ajay Kumar ; Ranjan, Pinku ; Sharma, Anand</creator><creatorcontrib>Singh, Om ; Bharamagoudra, Manjula R ; Gupta, Harshit ; Dwivedi, Ajay Kumar ; Ranjan, Pinku ; Sharma, Anand</creatorcontrib><description>In this communication, a microstrip line fed dielectric resonator antenna is optimized using various Machine learning-based models. Different ML algorithms such as ANN (artificial neural network), KNN (K-Nearest Neighbors), XG Boost (extreme gradient boosting), Random Forest, and Decision Tree are used to optimize the proposed antenna design within the frequency band 3.3–3.65 GHz. |S 11 | of the proposed antenna is predicted by using various ML algorithms. Dataset for the same is created through HFSS EM (Electromagnetic) simulator by varying the radius, height of DRA (Dielectric Resonator Antenna) as well as the width of microstrip line and conformal strip. Predicted results from all these models are quite close to the actual one except ANN. To overcome the problem of ANN, Knowledge-Based Neural Network techniques (KBNN) are implemented. All these ML algorithms are authenticated by practically constructing and measuring the proposed antenna. Fabricated antenna results are in good agreement with the values predicted by ML algorithms.</description><identifier>ISSN: 0973-7677</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-022-01989-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Engineering</subject><ispartof>Sadhana (Bangalore), 2022-11, Vol.47 (4), Article 226</ispartof><rights>Indian Academy of Sciences 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3</citedby><cites>FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3</cites><orcidid>0000-0003-1146-0902 ; 0000-0001-8566-1710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Om</creatorcontrib><creatorcontrib>Bharamagoudra, Manjula R</creatorcontrib><creatorcontrib>Gupta, Harshit</creatorcontrib><creatorcontrib>Dwivedi, Ajay Kumar</creatorcontrib><creatorcontrib>Ranjan, Pinku</creatorcontrib><creatorcontrib>Sharma, Anand</creatorcontrib><title>Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>In this communication, a microstrip line fed dielectric resonator antenna is optimized using various Machine learning-based models. Different ML algorithms such as ANN (artificial neural network), KNN (K-Nearest Neighbors), XG Boost (extreme gradient boosting), Random Forest, and Decision Tree are used to optimize the proposed antenna design within the frequency band 3.3–3.65 GHz. |S 11 | of the proposed antenna is predicted by using various ML algorithms. Dataset for the same is created through HFSS EM (Electromagnetic) simulator by varying the radius, height of DRA (Dielectric Resonator Antenna) as well as the width of microstrip line and conformal strip. Predicted results from all these models are quite close to the actual one except ANN. To overcome the problem of ANN, Knowledge-Based Neural Network techniques (KBNN) are implemented. All these ML algorithms are authenticated by practically constructing and measuring the proposed antenna. Fabricated antenna results are in good agreement with the values predicted by ML algorithms.</description><subject>Engineering</subject><issn>0973-7677</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFP-wOok6ebjKMUvqHjRc4j5aFN2syVJofrr3bUePHma4WWeYeZB6JrADQEQt4VQWPAGKG2AKKmawwmagRKsEVyI0z_9ObooZQtABUg2Q_ol2jyUmuMOdzF5HLzDLvrO2zGzOPsyJFOHjE2qPiWDh12NffwyNQ4J70tMa9wbu5nYzpucpsB06yHHuunLJToLpiv-6rfO0fvD_dvyqVm9Pj4v71aNpZTUxgIPKhjnGAcirWtDUIo5QaWkgUrWtu0HeCUkBSOJNFw6vmCtYIwYxVvD5oge907flOyD3uXYm_ypCehJkT4q0qMi_aNIH0aIHaEyDqe1z3o77HMa7_yP-gab7Wwv</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>Singh, Om</creator><creator>Bharamagoudra, Manjula R</creator><creator>Gupta, Harshit</creator><creator>Dwivedi, Ajay Kumar</creator><creator>Ranjan, Pinku</creator><creator>Sharma, Anand</creator><general>Springer India</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1146-0902</orcidid><orcidid>https://orcid.org/0000-0001-8566-1710</orcidid></search><sort><creationdate>20221105</creationdate><title>Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms</title><author>Singh, Om ; Bharamagoudra, Manjula R ; Gupta, Harshit ; Dwivedi, Ajay Kumar ; Ranjan, Pinku ; Sharma, Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Om</creatorcontrib><creatorcontrib>Bharamagoudra, Manjula R</creatorcontrib><creatorcontrib>Gupta, Harshit</creatorcontrib><creatorcontrib>Dwivedi, Ajay Kumar</creatorcontrib><creatorcontrib>Ranjan, Pinku</creatorcontrib><creatorcontrib>Sharma, Anand</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Om</au><au>Bharamagoudra, Manjula R</au><au>Gupta, Harshit</au><au>Dwivedi, Ajay Kumar</au><au>Ranjan, Pinku</au><au>Sharma, Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2022-11-05</date><risdate>2022</risdate><volume>47</volume><issue>4</issue><artnum>226</artnum><issn>0973-7677</issn><eissn>0973-7677</eissn><abstract>In this communication, a microstrip line fed dielectric resonator antenna is optimized using various Machine learning-based models. Different ML algorithms such as ANN (artificial neural network), KNN (K-Nearest Neighbors), XG Boost (extreme gradient boosting), Random Forest, and Decision Tree are used to optimize the proposed antenna design within the frequency band 3.3–3.65 GHz. |S 11 | of the proposed antenna is predicted by using various ML algorithms. Dataset for the same is created through HFSS EM (Electromagnetic) simulator by varying the radius, height of DRA (Dielectric Resonator Antenna) as well as the width of microstrip line and conformal strip. Predicted results from all these models are quite close to the actual one except ANN. To overcome the problem of ANN, Knowledge-Based Neural Network techniques (KBNN) are implemented. All these ML algorithms are authenticated by practically constructing and measuring the proposed antenna. Fabricated antenna results are in good agreement with the values predicted by ML algorithms.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-022-01989-x</doi><orcidid>https://orcid.org/0000-0003-1146-0902</orcidid><orcidid>https://orcid.org/0000-0001-8566-1710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-7677
ispartof Sadhana (Bangalore), 2022-11, Vol.47 (4), Article 226
issn 0973-7677
0973-7677
language eng
recordid cdi_crossref_primary_10_1007_s12046_022_01989_x
source Springer Nature
subjects Engineering
title Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstrip%20line%20fed%20dielectric%20resonator%20antenna%20optimization%20using%20machine%20learning%20algorithms&rft.jtitle=Sadhana%20(Bangalore)&rft.au=Singh,%20Om&rft.date=2022-11-05&rft.volume=47&rft.issue=4&rft.artnum=226&rft.issn=0973-7677&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-022-01989-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s12046_022_01989_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-c06f9fadd36018cd5ff993d72882f283555b0e97820a818a68d64357331a965a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true