Loading…
Neuroevolution: from architectures to learning
Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm h...
Saved in:
Published in: | Evolutionary intelligence 2008-03, Vol.1 (1), p.47-62 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63 |
container_end_page | 62 |
container_issue | 1 |
container_start_page | 47 |
container_title | Evolutionary intelligence |
container_volume | 1 |
creator | Floreano, Dario Dürr, Peter Mattiussi, Claudio |
description | Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architectures. |
doi_str_mv | 10.1007/s12065-007-0002-4 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12065_007_0002_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12065_007_0002_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqXlA9jlB1zGb8IOVbykCjZ0bTnGLqnSGI0TJP4eR0EsWYzmLO4ZzSXkisGaAZjrzDhoRQuWAU7lCVmwGy2pqpk5_WOoz8lFzgcAzcHIBVm_hBFT-ErdOLSpv60ipmPl0H-0Q_DDiCFXQ6q64LBv-_2KnEXX5XD5u5dk93D_tnmi29fH583dlnqh5ECjrmuhGsOa6BowrrADFaOKRr_z2ivvTRMCd054BcAECM0jU9KEWKJaLAmb73pMOWOI9hPbo8Nvy8BOhe1c2E44FbayOHx2csn2-4D2kEbsy5v_SD-Qb1jr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neuroevolution: from architectures to learning</title><source>Springer Link</source><creator>Floreano, Dario ; Dürr, Peter ; Mattiussi, Claudio</creator><creatorcontrib>Floreano, Dario ; Dürr, Peter ; Mattiussi, Claudio</creatorcontrib><description>Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architectures.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-007-0002-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Control ; Engineering ; Mathematical and Computational Engineering ; Mechatronics ; Review Article ; Robotics ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2008-03, Vol.1 (1), p.47-62</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63</citedby><cites>FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Floreano, Dario</creatorcontrib><creatorcontrib>Dürr, Peter</creatorcontrib><creatorcontrib>Mattiussi, Claudio</creatorcontrib><title>Neuroevolution: from architectures to learning</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architectures.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Review Article</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqXlA9jlB1zGb8IOVbykCjZ0bTnGLqnSGI0TJP4eR0EsWYzmLO4ZzSXkisGaAZjrzDhoRQuWAU7lCVmwGy2pqpk5_WOoz8lFzgcAzcHIBVm_hBFT-ErdOLSpv60ipmPl0H-0Q_DDiCFXQ6q64LBv-_2KnEXX5XD5u5dk93D_tnmi29fH583dlnqh5ECjrmuhGsOa6BowrrADFaOKRr_z2ivvTRMCd054BcAECM0jU9KEWKJaLAmb73pMOWOI9hPbo8Nvy8BOhe1c2E44FbayOHx2csn2-4D2kEbsy5v_SD-Qb1jr</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Floreano, Dario</creator><creator>Dürr, Peter</creator><creator>Mattiussi, Claudio</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080301</creationdate><title>Neuroevolution: from architectures to learning</title><author>Floreano, Dario ; Dürr, Peter ; Mattiussi, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Review Article</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floreano, Dario</creatorcontrib><creatorcontrib>Dürr, Peter</creatorcontrib><creatorcontrib>Mattiussi, Claudio</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floreano, Dario</au><au>Dürr, Peter</au><au>Mattiussi, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroevolution: from architectures to learning</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>1</volume><issue>1</issue><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architectures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12065-007-0002-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2008-03, Vol.1 (1), p.47-62 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12065_007_0002_4 |
source | Springer Link |
subjects | Applications of Mathematics Artificial Intelligence Bioinformatics Control Engineering Mathematical and Computational Engineering Mechatronics Review Article Robotics Statistical Physics and Dynamical Systems |
title | Neuroevolution: from architectures to learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroevolution:%20from%20architectures%20to%20learning&rft.jtitle=Evolutionary%20intelligence&rft.au=Floreano,%20Dario&rft.date=2008-03-01&rft.volume=1&rft.issue=1&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-007-0002-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s12065_007_0002_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-f69935b71bfab07a35ba05ff5f76d29c5cc7bee2aa3c500130362f1547ef5ba63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |