Loading…
Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance
It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their...
Saved in:
Published in: | Cryptography and communications 2024, Vol.16 (1), p.109-127 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3 |
container_end_page | 127 |
container_issue | 1 |
container_start_page | 109 |
container_title | Cryptography and communications |
container_volume | 16 |
creator | Tekin, Eda Gnilke, Oliver Wilhelm Özbudak, Ferruh Blümich, Bernhard Greferath, Marcus |
description | It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power. |
doi_str_mv | 10.1007/s12095-023-00659-x |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12095_023_00659_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12095_023_00659_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6z8AwG_0yyrikelSmxgbTnOuKQkdrAdUf6etEUsWc1Ic8_V6CB0S8kdJaS8T5SRShaE8YIQJatif4ZmtOKqYELK879dlJfoKqXdIcQEn6GPZdeHlPEA0YHN2Iw52BAjdCa3weMEnyN4Cwl_tfkdp950HfZjX0PEweHBjGm6uRCxGYautUcq4dbj3mw95NbiCCl4M3VcowtnugQ3v3OO3h4fXlfPxeblab1abgrLBMuFqGVJypqpBSwsbypHBCiAhldOlVRyVRvXLCgzQhBhlDVUNpxwV9WgrJA1nyN26rUxpBTB6SG2vYnfmhJ90KVPuvSkSx916f0E8ROUprDfQtS7MEY__fkf9QP0vnFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</title><source>Springer Link</source><creator>Tekin, Eda ; Gnilke, Oliver Wilhelm ; Özbudak, Ferruh ; Blümich, Bernhard ; Greferath, Marcus</creator><creatorcontrib>Tekin, Eda ; Gnilke, Oliver Wilhelm ; Özbudak, Ferruh ; Blümich, Bernhard ; Greferath, Marcus</creatorcontrib><description>It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-023-00659-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Communications Engineering ; Computer Science ; Data Structures and Information Theory ; Information and Communication ; Mathematics of Computing ; Networks</subject><ispartof>Cryptography and communications, 2024, Vol.16 (1), p.109-127</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tekin, Eda</creatorcontrib><creatorcontrib>Gnilke, Oliver Wilhelm</creatorcontrib><creatorcontrib>Özbudak, Ferruh</creatorcontrib><creatorcontrib>Blümich, Bernhard</creatorcontrib><creatorcontrib>Greferath, Marcus</creatorcontrib><title>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Information and Communication</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6z8AwG_0yyrikelSmxgbTnOuKQkdrAdUf6etEUsWc1Ic8_V6CB0S8kdJaS8T5SRShaE8YIQJatif4ZmtOKqYELK879dlJfoKqXdIcQEn6GPZdeHlPEA0YHN2Iw52BAjdCa3weMEnyN4Cwl_tfkdp950HfZjX0PEweHBjGm6uRCxGYautUcq4dbj3mw95NbiCCl4M3VcowtnugQ3v3OO3h4fXlfPxeblab1abgrLBMuFqGVJypqpBSwsbypHBCiAhldOlVRyVRvXLCgzQhBhlDVUNpxwV9WgrJA1nyN26rUxpBTB6SG2vYnfmhJ90KVPuvSkSx916f0E8ROUprDfQtS7MEY__fkf9QP0vnFs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tekin, Eda</creator><creator>Gnilke, Oliver Wilhelm</creator><creator>Özbudak, Ferruh</creator><creator>Blümich, Bernhard</creator><creator>Greferath, Marcus</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</title><author>Tekin, Eda ; Gnilke, Oliver Wilhelm ; Özbudak, Ferruh ; Blümich, Bernhard ; Greferath, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Information and Communication</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tekin, Eda</creatorcontrib><creatorcontrib>Gnilke, Oliver Wilhelm</creatorcontrib><creatorcontrib>Özbudak, Ferruh</creatorcontrib><creatorcontrib>Blümich, Bernhard</creatorcontrib><creatorcontrib>Greferath, Marcus</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tekin, Eda</au><au>Gnilke, Oliver Wilhelm</au><au>Özbudak, Ferruh</au><au>Blümich, Bernhard</au><au>Greferath, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2024</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>109</spage><epage>127</epage><pages>109-127</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-023-00659-x</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-2447 |
ispartof | Cryptography and communications, 2024, Vol.16 (1), p.109-127 |
issn | 1936-2447 1936-2455 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12095_023_00659_x |
source | Springer Link |
subjects | Circuits Coding and Information Theory Communications Engineering Computer Science Data Structures and Information Theory Information and Communication Mathematics of Computing Networks |
title | Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20perfect%20autocorrelation%20sequences%20with%20small%20number%20of%20pauses%20for%20applications%20in%20magnetic%20resonance&rft.jtitle=Cryptography%20and%20communications&rft.au=Tekin,%20Eda&rft.date=2024&rft.volume=16&rft.issue=1&rft.spage=109&rft.epage=127&rft.pages=109-127&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-023-00659-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s12095_023_00659_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |