Loading…

Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance

It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their...

Full description

Saved in:
Bibliographic Details
Published in:Cryptography and communications 2024, Vol.16 (1), p.109-127
Main Authors: Tekin, Eda, Gnilke, Oliver Wilhelm, Özbudak, Ferruh, Blümich, Bernhard, Greferath, Marcus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3
container_end_page 127
container_issue 1
container_start_page 109
container_title Cryptography and communications
container_volume 16
creator Tekin, Eda
Gnilke, Oliver Wilhelm
Özbudak, Ferruh
Blümich, Bernhard
Greferath, Marcus
description It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.
doi_str_mv 10.1007/s12095-023-00659-x
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12095_023_00659_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12095_023_00659_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6z8AwG_0yyrikelSmxgbTnOuKQkdrAdUf6etEUsWc1Ic8_V6CB0S8kdJaS8T5SRShaE8YIQJatif4ZmtOKqYELK879dlJfoKqXdIcQEn6GPZdeHlPEA0YHN2Iw52BAjdCa3weMEnyN4Cwl_tfkdp950HfZjX0PEweHBjGm6uRCxGYautUcq4dbj3mw95NbiCCl4M3VcowtnugQ3v3OO3h4fXlfPxeblab1abgrLBMuFqGVJypqpBSwsbypHBCiAhldOlVRyVRvXLCgzQhBhlDVUNpxwV9WgrJA1nyN26rUxpBTB6SG2vYnfmhJ90KVPuvSkSx916f0E8ROUprDfQtS7MEY__fkf9QP0vnFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</title><source>Springer Link</source><creator>Tekin, Eda ; Gnilke, Oliver Wilhelm ; Özbudak, Ferruh ; Blümich, Bernhard ; Greferath, Marcus</creator><creatorcontrib>Tekin, Eda ; Gnilke, Oliver Wilhelm ; Özbudak, Ferruh ; Blümich, Bernhard ; Greferath, Marcus</creatorcontrib><description>It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-023-00659-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Communications Engineering ; Computer Science ; Data Structures and Information Theory ; Information and Communication ; Mathematics of Computing ; Networks</subject><ispartof>Cryptography and communications, 2024, Vol.16 (1), p.109-127</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tekin, Eda</creatorcontrib><creatorcontrib>Gnilke, Oliver Wilhelm</creatorcontrib><creatorcontrib>Özbudak, Ferruh</creatorcontrib><creatorcontrib>Blümich, Bernhard</creatorcontrib><creatorcontrib>Greferath, Marcus</creatorcontrib><title>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Information and Communication</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6z8AwG_0yyrikelSmxgbTnOuKQkdrAdUf6etEUsWc1Ic8_V6CB0S8kdJaS8T5SRShaE8YIQJatif4ZmtOKqYELK879dlJfoKqXdIcQEn6GPZdeHlPEA0YHN2Iw52BAjdCa3weMEnyN4Cwl_tfkdp950HfZjX0PEweHBjGm6uRCxGYautUcq4dbj3mw95NbiCCl4M3VcowtnugQ3v3OO3h4fXlfPxeblab1abgrLBMuFqGVJypqpBSwsbypHBCiAhldOlVRyVRvXLCgzQhBhlDVUNpxwV9WgrJA1nyN26rUxpBTB6SG2vYnfmhJ90KVPuvSkSx916f0E8ROUprDfQtS7MEY__fkf9QP0vnFs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tekin, Eda</creator><creator>Gnilke, Oliver Wilhelm</creator><creator>Özbudak, Ferruh</creator><creator>Blümich, Bernhard</creator><creator>Greferath, Marcus</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</title><author>Tekin, Eda ; Gnilke, Oliver Wilhelm ; Özbudak, Ferruh ; Blümich, Bernhard ; Greferath, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Information and Communication</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tekin, Eda</creatorcontrib><creatorcontrib>Gnilke, Oliver Wilhelm</creatorcontrib><creatorcontrib>Özbudak, Ferruh</creatorcontrib><creatorcontrib>Blümich, Bernhard</creatorcontrib><creatorcontrib>Greferath, Marcus</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tekin, Eda</au><au>Gnilke, Oliver Wilhelm</au><au>Özbudak, Ferruh</au><au>Blümich, Bernhard</au><au>Greferath, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2024</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>109</spage><epage>127</epage><pages>109-127</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>It is well known that it is a challenge to find constant amplitude sequences with perfect autocorrelation over small alphabets. In this work we present a construction that provides sequences with perfect cyclic autocorrelation over different alphabets using the value zero only once or twice in their period. The constructions provide a big variety of periods also at moderate lengths and the corresponding sequences may be considered to be of ‘almost’ constant amplitude. These sequences have applications in NMR spectroscopy with low excitation power.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-023-00659-x</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-2447
ispartof Cryptography and communications, 2024, Vol.16 (1), p.109-127
issn 1936-2447
1936-2455
language eng
recordid cdi_crossref_primary_10_1007_s12095_023_00659_x
source Springer Link
subjects Circuits
Coding and Information Theory
Communications Engineering
Computer Science
Data Structures and Information Theory
Information and Communication
Mathematics of Computing
Networks
title Almost perfect autocorrelation sequences with small number of pauses for applications in magnetic resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20perfect%20autocorrelation%20sequences%20with%20small%20number%20of%20pauses%20for%20applications%20in%20magnetic%20resonance&rft.jtitle=Cryptography%20and%20communications&rft.au=Tekin,%20Eda&rft.date=2024&rft.volume=16&rft.issue=1&rft.spage=109&rft.epage=127&rft.pages=109-127&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-023-00659-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s12095_023_00659_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-4b5707b268e8c3d9f04e6eed39f671536bafd812a4404a6ca15d303f9be6c45b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true