Loading…
Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules
The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their...
Saved in:
Published in: | The Journal of geometric analysis 2014-04, Vol.24 (2), p.1144-1180 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83 |
container_end_page | 1180 |
container_issue | 2 |
container_start_page | 1144 |
container_title | The Journal of geometric analysis |
container_volume | 24 |
creator | Bernicot, Frédéric Maldonado, Diego Moen, Kabe Naibo, Virginia |
description | The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling. |
doi_str_mv | 10.1007/s12220-012-9367-4 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12220_012_9367_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12220_012_9367_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAGbZgOH5EyeeARWfSpVAUCRmlp28IFfBKXaDVEbsgVWwDnbCSkhVxozeHbxzdXUIOWZwwgCK08Q450CBcaqFKqjcISOW55oC8KfdIUMOVGmu9slBSgsAqYQsRuTswrc-oI3ZQ-e6Ft9-Pj7vOh8qG7-_smnA1962fuUxZTbU2Qy9C_6dztdLzO77FtMh2Wtsm_Do747J49XlfHJDZ7fX08n5jFZCixVtEDkgF4LVZVmjkKVrtCuFlIVWjcSiQCaRM6tzq51yvK6lcEohq5VmTSnGhG17q9ilFLExy-hfbFwbBmajwGwVmEGB2SgwcmD4lknDb3jGaBZdH8Mw8x_oFzfMYFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</title><source>Springer Nature</source><creator>Bernicot, Frédéric ; Maldonado, Diego ; Moen, Kabe ; Naibo, Virginia</creator><creatorcontrib>Bernicot, Frédéric ; Maldonado, Diego ; Moen, Kabe ; Naibo, Virginia</creatorcontrib><description>The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-012-9367-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2014-04, Vol.24 (2), p.1144-1180</ispartof><rights>Mathematica Josephina, Inc. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</citedby><cites>FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Maldonado, Diego</creatorcontrib><creatorcontrib>Moen, Kabe</creatorcontrib><creatorcontrib>Naibo, Virginia</creatorcontrib><title>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAGbZgOH5EyeeARWfSpVAUCRmlp28IFfBKXaDVEbsgVWwDnbCSkhVxozeHbxzdXUIOWZwwgCK08Q450CBcaqFKqjcISOW55oC8KfdIUMOVGmu9slBSgsAqYQsRuTswrc-oI3ZQ-e6Ft9-Pj7vOh8qG7-_smnA1962fuUxZTbU2Qy9C_6dztdLzO77FtMh2Wtsm_Do747J49XlfHJDZ7fX08n5jFZCixVtEDkgF4LVZVmjkKVrtCuFlIVWjcSiQCaRM6tzq51yvK6lcEohq5VmTSnGhG17q9ilFLExy-hfbFwbBmajwGwVmEGB2SgwcmD4lknDb3jGaBZdH8Mw8x_oFzfMYFw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Bernicot, Frédéric</creator><creator>Maldonado, Diego</creator><creator>Moen, Kabe</creator><creator>Naibo, Virginia</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140401</creationdate><title>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</title><author>Bernicot, Frédéric ; Maldonado, Diego ; Moen, Kabe ; Naibo, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Maldonado, Diego</creatorcontrib><creatorcontrib>Moen, Kabe</creatorcontrib><creatorcontrib>Naibo, Virginia</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernicot, Frédéric</au><au>Maldonado, Diego</au><au>Moen, Kabe</au><au>Naibo, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>24</volume><issue>2</issue><spage>1144</spage><epage>1180</epage><pages>1144-1180</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s12220-012-9367-4</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2014-04, Vol.24 (2), p.1144-1180 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12220_012_9367_4 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics |
title | Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20Sobolev%E2%80%93Poincar%C3%A9%20Inequalities%20and%20Leibniz-Type%20Rules&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Bernicot,%20Fr%C3%A9d%C3%A9ric&rft.date=2014-04-01&rft.volume=24&rft.issue=2&rft.spage=1144&rft.epage=1180&rft.pages=1144-1180&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-012-9367-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s12220_012_9367_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |