Loading…

Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules

The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2014-04, Vol.24 (2), p.1144-1180
Main Authors: Bernicot, Frédéric, Maldonado, Diego, Moen, Kabe, Naibo, Virginia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83
cites cdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83
container_end_page 1180
container_issue 2
container_start_page 1144
container_title The Journal of geometric analysis
container_volume 24
creator Bernicot, Frédéric
Maldonado, Diego
Moen, Kabe
Naibo, Virginia
description The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.
doi_str_mv 10.1007/s12220-012-9367-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12220_012_9367_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12220_012_9367_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAGbZgOH5EyeeARWfSpVAUCRmlp28IFfBKXaDVEbsgVWwDnbCSkhVxozeHbxzdXUIOWZwwgCK08Q450CBcaqFKqjcISOW55oC8KfdIUMOVGmu9slBSgsAqYQsRuTswrc-oI3ZQ-e6Ft9-Pj7vOh8qG7-_smnA1962fuUxZTbU2Qy9C_6dztdLzO77FtMh2Wtsm_Do747J49XlfHJDZ7fX08n5jFZCixVtEDkgF4LVZVmjkKVrtCuFlIVWjcSiQCaRM6tzq51yvK6lcEohq5VmTSnGhG17q9ilFLExy-hfbFwbBmajwGwVmEGB2SgwcmD4lknDb3jGaBZdH8Mw8x_oFzfMYFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</title><source>Springer Nature</source><creator>Bernicot, Frédéric ; Maldonado, Diego ; Moen, Kabe ; Naibo, Virginia</creator><creatorcontrib>Bernicot, Frédéric ; Maldonado, Diego ; Moen, Kabe ; Naibo, Virginia</creatorcontrib><description>The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-012-9367-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2014-04, Vol.24 (2), p.1144-1180</ispartof><rights>Mathematica Josephina, Inc. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</citedby><cites>FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Maldonado, Diego</creatorcontrib><creatorcontrib>Moen, Kabe</creatorcontrib><creatorcontrib>Naibo, Virginia</creatorcontrib><title>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAGbZgOH5EyeeARWfSpVAUCRmlp28IFfBKXaDVEbsgVWwDnbCSkhVxozeHbxzdXUIOWZwwgCK08Q450CBcaqFKqjcISOW55oC8KfdIUMOVGmu9slBSgsAqYQsRuTswrc-oI3ZQ-e6Ft9-Pj7vOh8qG7-_smnA1962fuUxZTbU2Qy9C_6dztdLzO77FtMh2Wtsm_Do747J49XlfHJDZ7fX08n5jFZCixVtEDkgF4LVZVmjkKVrtCuFlIVWjcSiQCaRM6tzq51yvK6lcEohq5VmTSnGhG17q9ilFLExy-hfbFwbBmajwGwVmEGB2SgwcmD4lknDb3jGaBZdH8Mw8x_oFzfMYFw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Bernicot, Frédéric</creator><creator>Maldonado, Diego</creator><creator>Moen, Kabe</creator><creator>Naibo, Virginia</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140401</creationdate><title>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</title><author>Bernicot, Frédéric ; Maldonado, Diego ; Moen, Kabe ; Naibo, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Maldonado, Diego</creatorcontrib><creatorcontrib>Moen, Kabe</creatorcontrib><creatorcontrib>Naibo, Virginia</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernicot, Frédéric</au><au>Maldonado, Diego</au><au>Moen, Kabe</au><au>Naibo, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>24</volume><issue>2</issue><spage>1144</spage><epage>1180</epage><pages>1144-1180</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>The dual purpose of this article is to establish bilinear Poincaré-type estimates associated with an approximation of the identity and to explore the connections between bilinear pseudo-differential operators and bilinear potential-type operators. The common underlying theme in both topics is their applications to Leibniz-type rules in Sobolev and Campanato–Morrey spaces under Sobolev scaling.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s12220-012-9367-4</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2014-04, Vol.24 (2), p.1144-1180
issn 1050-6926
1559-002X
language eng
recordid cdi_crossref_primary_10_1007_s12220_012_9367_4
source Springer Nature
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20Sobolev%E2%80%93Poincar%C3%A9%20Inequalities%20and%20Leibniz-Type%20Rules&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Bernicot,%20Fr%C3%A9d%C3%A9ric&rft.date=2014-04-01&rft.volume=24&rft.issue=2&rft.spage=1144&rft.epage=1180&rft.pages=1144-1180&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-012-9367-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s12220_012_9367_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-fee20e2331d88de348bf9b8344796f4e77e14e21a95a9b6b2dd43b66e1d691f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true