Loading…
Generic Level Sets in Mean Curvature Flow are BV Solutions
We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and S...
Saved in:
Published in: | The Journal of geometric analysis 2024-12, Vol.34 (12), Article 375 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | The Journal of geometric analysis |
container_volume | 34 |
creator | Ullrich, Anton Laux, Tim |
description | We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows. |
doi_str_mv | 10.1007/s12220-024-01819-y |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12220_024_01819_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12220_024_01819_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213</originalsourceid><addsrcrecordid>eNp9j0FOwzAQRS0EEqVwAVa-gGE8ie2YHVS0IBWxKCB2lpuOUaqQIDspyu0bKGtW8xfzvv5j7FLClQQw10kiIgjAXIAspBXDEZtIpawAwPfjMYMCoS3qU3aW0hYg11luJuxmQQ3FquRL2lHNV9QlXjX8iXzDZ33c-a6PxOd1-839GO7e-Kqt-65qm3TOToKvE1383Sl7nd-_zB7E8nnxOLtdihKl7kRQweoNFkWh12tUORmFmoIJYCkLCGANWrMxXqkcC19KudakZW6yDVmPMpsyPPSWsU0pUnBfsfr0cXAS3I-9O9i70d792rthhLIDlMbn5oOi27Z9bMad_1F77AVcGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generic Level Sets in Mean Curvature Flow are BV Solutions</title><source>Springer Nature</source><creator>Ullrich, Anton ; Laux, Tim</creator><creatorcontrib>Ullrich, Anton ; Laux, Tim</creatorcontrib><description>We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-024-01819-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2024-12, Vol.34 (12), Article 375</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213</cites><orcidid>0000-0003-4239-7061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ullrich, Anton</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><title>Generic Level Sets in Mean Curvature Flow are BV Solutions</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j0FOwzAQRS0EEqVwAVa-gGE8ie2YHVS0IBWxKCB2lpuOUaqQIDspyu0bKGtW8xfzvv5j7FLClQQw10kiIgjAXIAspBXDEZtIpawAwPfjMYMCoS3qU3aW0hYg11luJuxmQQ3FquRL2lHNV9QlXjX8iXzDZ33c-a6PxOd1-839GO7e-Kqt-65qm3TOToKvE1383Sl7nd-_zB7E8nnxOLtdihKl7kRQweoNFkWh12tUORmFmoIJYCkLCGANWrMxXqkcC19KudakZW6yDVmPMpsyPPSWsU0pUnBfsfr0cXAS3I-9O9i70d792rthhLIDlMbn5oOi27Z9bMad_1F77AVcGg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ullrich, Anton</creator><creator>Laux, Tim</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4239-7061</orcidid></search><sort><creationdate>20241201</creationdate><title>Generic Level Sets in Mean Curvature Flow are BV Solutions</title><author>Ullrich, Anton ; Laux, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullrich, Anton</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullrich, Anton</au><au>Laux, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic Level Sets in Mean Curvature Flow are BV Solutions</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>34</volume><issue>12</issue><artnum>375</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-024-01819-y</doi><orcidid>https://orcid.org/0000-0003-4239-7061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2024-12, Vol.34 (12), Article 375 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12220_024_01819_y |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics |
title | Generic Level Sets in Mean Curvature Flow are BV Solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20Level%20Sets%20in%20Mean%20Curvature%20Flow%20are%20BV%20Solutions&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Ullrich,%20Anton&rft.date=2024-12-01&rft.volume=34&rft.issue=12&rft.artnum=375&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-024-01819-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s12220_024_01819_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |