Loading…

Generic Level Sets in Mean Curvature Flow are BV Solutions

We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and S...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2024-12, Vol.34 (12), Article 375
Main Authors: Ullrich, Anton, Laux, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213
container_end_page
container_issue 12
container_start_page
container_title The Journal of geometric analysis
container_volume 34
creator Ullrich, Anton
Laux, Tim
description We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.
doi_str_mv 10.1007/s12220-024-01819-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12220_024_01819_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12220_024_01819_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213</originalsourceid><addsrcrecordid>eNp9j0FOwzAQRS0EEqVwAVa-gGE8ie2YHVS0IBWxKCB2lpuOUaqQIDspyu0bKGtW8xfzvv5j7FLClQQw10kiIgjAXIAspBXDEZtIpawAwPfjMYMCoS3qU3aW0hYg11luJuxmQQ3FquRL2lHNV9QlXjX8iXzDZ33c-a6PxOd1-839GO7e-Kqt-65qm3TOToKvE1383Sl7nd-_zB7E8nnxOLtdihKl7kRQweoNFkWh12tUORmFmoIJYCkLCGANWrMxXqkcC19KudakZW6yDVmPMpsyPPSWsU0pUnBfsfr0cXAS3I-9O9i70d792rthhLIDlMbn5oOi27Z9bMad_1F77AVcGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generic Level Sets in Mean Curvature Flow are BV Solutions</title><source>Springer Nature</source><creator>Ullrich, Anton ; Laux, Tim</creator><creatorcontrib>Ullrich, Anton ; Laux, Tim</creatorcontrib><description>We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-024-01819-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2024-12, Vol.34 (12), Article 375</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213</cites><orcidid>0000-0003-4239-7061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ullrich, Anton</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><title>Generic Level Sets in Mean Curvature Flow are BV Solutions</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j0FOwzAQRS0EEqVwAVa-gGE8ie2YHVS0IBWxKCB2lpuOUaqQIDspyu0bKGtW8xfzvv5j7FLClQQw10kiIgjAXIAspBXDEZtIpawAwPfjMYMCoS3qU3aW0hYg11luJuxmQQ3FquRL2lHNV9QlXjX8iXzDZ33c-a6PxOd1-839GO7e-Kqt-65qm3TOToKvE1383Sl7nd-_zB7E8nnxOLtdihKl7kRQweoNFkWh12tUORmFmoIJYCkLCGANWrMxXqkcC19KudakZW6yDVmPMpsyPPSWsU0pUnBfsfr0cXAS3I-9O9i70d792rthhLIDlMbn5oOi27Z9bMad_1F77AVcGg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ullrich, Anton</creator><creator>Laux, Tim</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4239-7061</orcidid></search><sort><creationdate>20241201</creationdate><title>Generic Level Sets in Mean Curvature Flow are BV Solutions</title><author>Ullrich, Anton ; Laux, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullrich, Anton</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullrich, Anton</au><au>Laux, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic Level Sets in Mean Curvature Flow are BV Solutions</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>34</volume><issue>12</issue><artnum>375</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We show that a generic level set of the viscosity solution to mean curvature flow is a distributional solution in the framework of sets of finite perimeter by Luckhaus and Sturzenhecker, which in addition saturates the optimal energy dissipation rate. This extends the fundamental work of Evans and Spruck (J Geom Anal 5(1):79–116, 1995), which draws a similar connection between the viscosity solution and Brakke flows.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-024-01819-y</doi><orcidid>https://orcid.org/0000-0003-4239-7061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2024-12, Vol.34 (12), Article 375
issn 1050-6926
1559-002X
language eng
recordid cdi_crossref_primary_10_1007_s12220_024_01819_y
source Springer Nature
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title Generic Level Sets in Mean Curvature Flow are BV Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20Level%20Sets%20in%20Mean%20Curvature%20Flow%20are%20BV%20Solutions&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Ullrich,%20Anton&rft.date=2024-12-01&rft.volume=34&rft.issue=12&rft.artnum=375&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-024-01819-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s12220_024_01819_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-f5f96d28886bb254e7526ef7f09e3f20097297d7a55428ac11b6e61473de9a213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true