Loading…

A review on machine learning–based approaches for Internet traffic classification

Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control...

Full description

Saved in:
Bibliographic Details
Published in:Annales des télécommunications 2020-12, Vol.75 (11-12), p.673-710
Main Authors: Salman, Ola, Elhajj, Imad H., Kayssi, Ayman, Chehab, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3
cites cdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3
container_end_page 710
container_issue 11-12
container_start_page 673
container_title Annales des télécommunications
container_volume 75
creator Salman, Ola
Elhajj, Imad H.
Kayssi, Ayman
Chehab, Ali
description Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.
doi_str_mv 10.1007/s12243-020-00770-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12243_020_00770_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12243_020_00770_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</originalsourceid><addsrcrecordid>eNp9kEtOAzEMQCMEEqVwAVa5QMD5TDNZVhWfSpVYAOvIM3XKVG2mSgYQO-7ADTlJA2XNyrbsZ9mPsUsJVxLAXmeplNECFIhSWhD2iI2kq2rhtKuO2QgAtDDa2FN2lvMaYAK2qkbsccoTvXX0zvvIt9i-dJH4hjDFLq6-P78azLTkuNulvjQp89AnPo8DpUgDHxKG0LW83WDOXclw6Pp4zk4CbjJd_MUxe769eZrdi8XD3Xw2XYhWOTkIDITaqRaN1agMobSyMo0jpCrUkpoGdF0vgaTRwSGVv6hGGzS2yrgJ6jFTh71t6nNOFPwudVtMH16C_9HiD1p80eJ_tXhbIH2AchmOK0p-3b-mWO78j9oD3OZoMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A review on machine learning–based approaches for Internet traffic classification</title><source>Springer Link</source><creator>Salman, Ola ; Elhajj, Imad H. ; Kayssi, Ayman ; Chehab, Ali</creator><creatorcontrib>Salman, Ola ; Elhajj, Imad H. ; Kayssi, Ayman ; Chehab, Ali</creatorcontrib><description>Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.</description><identifier>ISSN: 0003-4347</identifier><identifier>EISSN: 1958-9395</identifier><identifier>DOI: 10.1007/s12243-020-00770-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Circuits ; Communications Engineering ; Computer Communication Networks ; Engineering ; Information and Communication ; Information Systems and Communication Service ; Networks ; R &amp; D/Technology Policy ; Signal,Image and Speech Processing</subject><ispartof>Annales des télécommunications, 2020-12, Vol.75 (11-12), p.673-710</ispartof><rights>Institut Mines-Télécom and Springer Nature Switzerland AG 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</citedby><cites>FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</cites><orcidid>0000-0002-1011-8665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salman, Ola</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><creatorcontrib>Kayssi, Ayman</creatorcontrib><creatorcontrib>Chehab, Ali</creatorcontrib><title>A review on machine learning–based approaches for Internet traffic classification</title><title>Annales des télécommunications</title><addtitle>Ann. Telecommun</addtitle><description>Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.</description><subject>Circuits</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Information and Communication</subject><subject>Information Systems and Communication Service</subject><subject>Networks</subject><subject>R &amp; D/Technology Policy</subject><subject>Signal,Image and Speech Processing</subject><issn>0003-4347</issn><issn>1958-9395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOAzEMQCMEEqVwAVa5QMD5TDNZVhWfSpVYAOvIM3XKVG2mSgYQO-7ADTlJA2XNyrbsZ9mPsUsJVxLAXmeplNECFIhSWhD2iI2kq2rhtKuO2QgAtDDa2FN2lvMaYAK2qkbsccoTvXX0zvvIt9i-dJH4hjDFLq6-P78azLTkuNulvjQp89AnPo8DpUgDHxKG0LW83WDOXclw6Pp4zk4CbjJd_MUxe769eZrdi8XD3Xw2XYhWOTkIDITaqRaN1agMobSyMo0jpCrUkpoGdF0vgaTRwSGVv6hGGzS2yrgJ6jFTh71t6nNOFPwudVtMH16C_9HiD1p80eJ_tXhbIH2AchmOK0p-3b-mWO78j9oD3OZoMA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Salman, Ola</creator><creator>Elhajj, Imad H.</creator><creator>Kayssi, Ayman</creator><creator>Chehab, Ali</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1011-8665</orcidid></search><sort><creationdate>20201201</creationdate><title>A review on machine learning–based approaches for Internet traffic classification</title><author>Salman, Ola ; Elhajj, Imad H. ; Kayssi, Ayman ; Chehab, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Information and Communication</topic><topic>Information Systems and Communication Service</topic><topic>Networks</topic><topic>R &amp; D/Technology Policy</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salman, Ola</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><creatorcontrib>Kayssi, Ayman</creatorcontrib><creatorcontrib>Chehab, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Annales des télécommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salman, Ola</au><au>Elhajj, Imad H.</au><au>Kayssi, Ayman</au><au>Chehab, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on machine learning–based approaches for Internet traffic classification</atitle><jtitle>Annales des télécommunications</jtitle><stitle>Ann. Telecommun</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>75</volume><issue>11-12</issue><spage>673</spage><epage>710</epage><pages>673-710</pages><issn>0003-4347</issn><eissn>1958-9395</eissn><abstract>Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12243-020-00770-7</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-1011-8665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-4347
ispartof Annales des télécommunications, 2020-12, Vol.75 (11-12), p.673-710
issn 0003-4347
1958-9395
language eng
recordid cdi_crossref_primary_10_1007_s12243_020_00770_7
source Springer Link
subjects Circuits
Communications Engineering
Computer Communication Networks
Engineering
Information and Communication
Information Systems and Communication Service
Networks
R & D/Technology Policy
Signal,Image and Speech Processing
title A review on machine learning–based approaches for Internet traffic classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20machine%20learning%E2%80%93based%20approaches%20for%20Internet%20traffic%20classification&rft.jtitle=Annales%20des%20t%C3%A9l%C3%A9communications&rft.au=Salman,%20Ola&rft.date=2020-12-01&rft.volume=75&rft.issue=11-12&rft.spage=673&rft.epage=710&rft.pages=673-710&rft.issn=0003-4347&rft.eissn=1958-9395&rft_id=info:doi/10.1007/s12243-020-00770-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s12243_020_00770_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true