Loading…
A review on machine learning–based approaches for Internet traffic classification
Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control...
Saved in:
Published in: | Annales des télécommunications 2020-12, Vol.75 (11-12), p.673-710 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3 |
container_end_page | 710 |
container_issue | 11-12 |
container_start_page | 673 |
container_title | Annales des télécommunications |
container_volume | 75 |
creator | Salman, Ola Elhajj, Imad H. Kayssi, Ayman Chehab, Ali |
description | Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research. |
doi_str_mv | 10.1007/s12243-020-00770-7 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12243_020_00770_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12243_020_00770_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</originalsourceid><addsrcrecordid>eNp9kEtOAzEMQCMEEqVwAVa5QMD5TDNZVhWfSpVYAOvIM3XKVG2mSgYQO-7ADTlJA2XNyrbsZ9mPsUsJVxLAXmeplNECFIhSWhD2iI2kq2rhtKuO2QgAtDDa2FN2lvMaYAK2qkbsccoTvXX0zvvIt9i-dJH4hjDFLq6-P78azLTkuNulvjQp89AnPo8DpUgDHxKG0LW83WDOXclw6Pp4zk4CbjJd_MUxe769eZrdi8XD3Xw2XYhWOTkIDITaqRaN1agMobSyMo0jpCrUkpoGdF0vgaTRwSGVv6hGGzS2yrgJ6jFTh71t6nNOFPwudVtMH16C_9HiD1p80eJ_tXhbIH2AchmOK0p-3b-mWO78j9oD3OZoMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A review on machine learning–based approaches for Internet traffic classification</title><source>Springer Link</source><creator>Salman, Ola ; Elhajj, Imad H. ; Kayssi, Ayman ; Chehab, Ali</creator><creatorcontrib>Salman, Ola ; Elhajj, Imad H. ; Kayssi, Ayman ; Chehab, Ali</creatorcontrib><description>Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.</description><identifier>ISSN: 0003-4347</identifier><identifier>EISSN: 1958-9395</identifier><identifier>DOI: 10.1007/s12243-020-00770-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Circuits ; Communications Engineering ; Computer Communication Networks ; Engineering ; Information and Communication ; Information Systems and Communication Service ; Networks ; R & D/Technology Policy ; Signal,Image and Speech Processing</subject><ispartof>Annales des télécommunications, 2020-12, Vol.75 (11-12), p.673-710</ispartof><rights>Institut Mines-Télécom and Springer Nature Switzerland AG 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</citedby><cites>FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</cites><orcidid>0000-0002-1011-8665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salman, Ola</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><creatorcontrib>Kayssi, Ayman</creatorcontrib><creatorcontrib>Chehab, Ali</creatorcontrib><title>A review on machine learning–based approaches for Internet traffic classification</title><title>Annales des télécommunications</title><addtitle>Ann. Telecommun</addtitle><description>Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.</description><subject>Circuits</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Information and Communication</subject><subject>Information Systems and Communication Service</subject><subject>Networks</subject><subject>R & D/Technology Policy</subject><subject>Signal,Image and Speech Processing</subject><issn>0003-4347</issn><issn>1958-9395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOAzEMQCMEEqVwAVa5QMD5TDNZVhWfSpVYAOvIM3XKVG2mSgYQO-7ADTlJA2XNyrbsZ9mPsUsJVxLAXmeplNECFIhSWhD2iI2kq2rhtKuO2QgAtDDa2FN2lvMaYAK2qkbsccoTvXX0zvvIt9i-dJH4hjDFLq6-P78azLTkuNulvjQp89AnPo8DpUgDHxKG0LW83WDOXclw6Pp4zk4CbjJd_MUxe769eZrdi8XD3Xw2XYhWOTkIDITaqRaN1agMobSyMo0jpCrUkpoGdF0vgaTRwSGVv6hGGzS2yrgJ6jFTh71t6nNOFPwudVtMH16C_9HiD1p80eJ_tXhbIH2AchmOK0p-3b-mWO78j9oD3OZoMA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Salman, Ola</creator><creator>Elhajj, Imad H.</creator><creator>Kayssi, Ayman</creator><creator>Chehab, Ali</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1011-8665</orcidid></search><sort><creationdate>20201201</creationdate><title>A review on machine learning–based approaches for Internet traffic classification</title><author>Salman, Ola ; Elhajj, Imad H. ; Kayssi, Ayman ; Chehab, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Information and Communication</topic><topic>Information Systems and Communication Service</topic><topic>Networks</topic><topic>R & D/Technology Policy</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salman, Ola</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><creatorcontrib>Kayssi, Ayman</creatorcontrib><creatorcontrib>Chehab, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Annales des télécommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salman, Ola</au><au>Elhajj, Imad H.</au><au>Kayssi, Ayman</au><au>Chehab, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on machine learning–based approaches for Internet traffic classification</atitle><jtitle>Annales des télécommunications</jtitle><stitle>Ann. Telecommun</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>75</volume><issue>11-12</issue><spage>673</spage><epage>710</epage><pages>673-710</pages><issn>0003-4347</issn><eissn>1958-9395</eissn><abstract>Traffic classification acquired the interest of the Internet community early on. Different approaches have been proposed to classify Internet traffic to manage both security and Quality of Service (QoS). However, traditional classification approaches consisting of modifying the Transmission Control Protocol/Internet Protocol (TCP/IP) scheme have not been adopted due to their complex management. In addition, port-based methods and deep packet inspection have limitations in dealing with new traffic characteristics (e.g., dynamic port allocation, tunneling, encryption). Conversely, machine learning (ML) solutions effectively classify traffic down to the device type and specific user action. Another research direction aims to anonymize Internet traffic and thwart classification to maintain user privacy. Existing traffic surveys focus on classification and do not consider anonymization. Here, we review the Internet traffic classification and obfuscation techniques, largely considering the ML-based solutions. In addition, this paper presents a comprehensive review of various data representation methods, and the different objectives of Internet traffic classification. Finally, we present the key findings, limitations, and recommendations for future research.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12243-020-00770-7</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-1011-8665</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4347 |
ispartof | Annales des télécommunications, 2020-12, Vol.75 (11-12), p.673-710 |
issn | 0003-4347 1958-9395 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12243_020_00770_7 |
source | Springer Link |
subjects | Circuits Communications Engineering Computer Communication Networks Engineering Information and Communication Information Systems and Communication Service Networks R & D/Technology Policy Signal,Image and Speech Processing |
title | A review on machine learning–based approaches for Internet traffic classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20machine%20learning%E2%80%93based%20approaches%20for%20Internet%20traffic%20classification&rft.jtitle=Annales%20des%20t%C3%A9l%C3%A9communications&rft.au=Salman,%20Ola&rft.date=2020-12-01&rft.volume=75&rft.issue=11-12&rft.spage=673&rft.epage=710&rft.pages=673-710&rft.issn=0003-4347&rft.eissn=1958-9395&rft_id=info:doi/10.1007/s12243-020-00770-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s12243_020_00770_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-afea392ca473a24ea17154b9eae5f81ebb0388d0e143f9ae077e8a7f3ac2496a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |