Loading…

Blockchain for Data Originality in Pharma Manufacturing

Purpose This paper analyses the feasibility of tracking data originality for pharmaceutical manufacturing in a tamper-proof manner using a geographically distributed system. The main research question is whether it is possible to ensure the traceability of drug manufacturing through the use of smart...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical innovation 2023-12, Vol.18 (4), p.1745-1763
Main Authors: Durá, Marta, Leal, Fátima, Sánchez-García, Ángel, Sáez, Carlos, García-Gómez, Juan M., Chis, Adriana E., González-Vélez, Horacio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This paper analyses the feasibility of tracking data originality for pharmaceutical manufacturing in a tamper-proof manner using a geographically distributed system. The main research question is whether it is possible to ensure the traceability of drug manufacturing through the use of smart contracts and a private blockchain network. Methods This work employs a private Ethereum network with a proof-of-authority consensus algorithm to allow participating nodes to commit the medicament manufacturing originality as transactions in blocks. We use smart contracts to assess the “Original” principle of the ALCOA+ data integrity principles for full sensor-enabled production lines within pharmaceutical manufacturing plants. We have evaluated our data originality assessment approach employing a temporal series of 1300 reports generated based on real datasets from pharma production lines. Out of these reports, 300 reports have been randomly tampered with to make them “unoriginal” (i.e., falsified). Results Evaluation consistently shows that the proposed approach systematically detects all the manufacturing records whether original or not, together with any source of falsification. By randomly injecting four common data falsification types, their approach effectively detects tampering and ensures the authenticity of the data originality acquired by sensors within manufacturing lines. Conclusion The approach of using a private blockchain network with a proof-of-authority consensus algorithm and smart contracts is a feasible method to track data originality for pharmaceutical manufacturing in a tamper-proof manner. In addition, this approach effectively detects tampering and ensures the authenticity of the data originality acquired by sensors within manufacturing lines.
ISSN:1872-5120
1939-8042
DOI:10.1007/s12247-023-09748-z