Loading…

In Vitro Profiling of Gliclazide-Loaded Aerosil 380 Solid Dispersion–Based Tablets with Co-Processed Excipients

Purpose Gliclazide (GLC)-loaded Aerosil 380 solid dispersion (GA-SD)-based tablets with co-processed excipient composites were formulated to critically evaluate the physicochemical performance of the resulting tablets with enhanced drug release. Methods GA-SD was prepared using the solvent evaporati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical innovation 2024-04, Vol.19 (2), Article 17
Main Authors: Alam, Israt Zerin, Sultana, Jakia, Kazi, Mohsin, Uddin, Mohammad N., Rahman, Md Bytul Mokaddesur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Gliclazide (GLC)-loaded Aerosil 380 solid dispersion (GA-SD)-based tablets with co-processed excipient composites were formulated to critically evaluate the physicochemical performance of the resulting tablets with enhanced drug release. Methods GA-SD was prepared using the solvent evaporation method with a 1:1 weight ratio based on a previously published report, and its drug release patterns were evaluated. Processed excipient composites, such as lactose-starch-povidone (LSP) and lactose-starch-povidone-sodium starch glycolate (LSPS), were prepared via a coprocessing strategy and evaluated for their ability to perform specific functions. At predetermined combination levels, aqueous dispersions of primary excipients were physically agglomerated at a controlled temperature below the gelatinization temperature (55 °C) before drying at 60 °C for 48 h. GA-SD and co-processed excipients (LSP and LSPS) were utilized to produce tablet batches GAC1 to GAC8 (Gliclazide-Aerosil 380–co-processed excipients, GAC) by direct compression. Through rigorous testing of tablet batches, the physicochemical properties of the resulting formulations were analyzed and compared to those of leading marketed formulations (MFs). FTIR studies were also conducted to detect drug-excipient interactions in the tablet formulations. The release mechanism of the GLC was determined by studying the dissolution process with various kinetic models. The GAC tablets were subjected to 40 °C/75% RH for 3 months to assess stability. Results All tablet formulations of GA-SD containing co-processed excipients met the weight, friability, disintegration time, mechanical strength, and homogeneity requirements. There was significantly more GLC released from the GAC formulations ( p  
ISSN:1872-5120
1939-8042
DOI:10.1007/s12247-024-09817-x