Loading…
Green Synthesis of Silver Nanoparticles by Using Anthemis Tricolor Boiss., Factorial Design for Parameter Optimization, Characterization and In-Vitro Biological Activities
Purpose The objectives of the study are to obtain silver nanoparticles using Anthemis tricolor in an environmentally friendly, economical, and more effective way with green synthesis and also to determine the most appropriate parameters by examining the effects of preparation conditions on particle...
Saved in:
Published in: | Journal of pharmaceutical innovation 2024-06, Vol.19 (3), Article 32 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The objectives of the study are to obtain silver nanoparticles using
Anthemis tricolor
in an environmentally friendly, economical, and more effective way with green synthesis and also to determine the most appropriate parameters by examining the effects of preparation conditions on particle size, polydispersity index, and zeta potential using factorial design and further to compare the bioactivity results between water extract and silver nanoparticles. Thus, it is aimed to shed light on further studies on the lightening effects of nanoparticles on the skin.
Methods
In this study, silver nanoparticles were synthesized by reduction using
Anthemis tricolor
water extract and silver nitrate solution. Then, various characterization methods (Ultraviolet-Visible Spectroscopy, X-Ray Diffraction analysis) were studied. In addition, the effects of incubation temperature, silver nitrate solution concentration, and extract volume on particle size, zeta potential, and polydispersity index were investigated, and optimum parameters were determined. In addition, antioxidant activities of water extract and silver nanoparticles (DPPH Radical Scavenging Activity, ABTS Radical Cation Scavenging Activity, and Cupric Reducing Antioxidant Capacity) and tyrosinase inhibitory activities were determined.
Results
According to the results, it was observed that biosynthesis took place with the absorption peak at 440 nm. In addition, changes in peak intensities and shifts in values that occur at the end of nanoparticle formation were determined by Fourier Transform Infrared Spectroscopy. Cubic morphology was determined by Scanning Electron Microscopy. The existence of (111), (200), (220) and (311) planes was proved by X-ray diffraction analysis, confirming the existence of silver nanoparticles in a cubic structure. The optimized parameters were determined for silver nanoparticles obtained by incubating 5 ml of an extract with 1 mM silver nitrate solution at 25 °C. Polydispersity index, zeta potential, and particle size values were in the appropriate range. On the other hand, it was observed than silver nanoparticles’ antioxidant and tyrosinase inhibitory activities were higher than those the water extract.
Conclusion
It was concluded that
Anthemis tricolor
could be presented as an effective, stable, reducing agent. It also suggested that it can be used due to its antioxidant and tyrosinase inhibitory activities and directed to further studies for skin-lightening preparations. |
---|---|
ISSN: | 1872-5120 1939-8042 |
DOI: | 10.1007/s12247-024-09842-w |