Loading…

Targeted regulation of neuroinflammation via nanobiosignaler for repairing the central nerve system injuries

Neuroinflammation, commonly associated with various central nervous system (CNS) diseases such as postoperative cognitive dysfunction (POCD), is primarily mediated by the disruption of biological signals in microglia. However, the effective treatment of CNS diseases remains an ongoing challenge as b...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2023-02, Vol.16 (2), p.2938-2948
Main Authors: Sun, Xiaoru, Ruan, Huitong, Liu, Qidong, Cao, Silu, Jing, Qi, Xu, Yaru, Xiong, Lize, Cui, Wenguo, Li, Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuroinflammation, commonly associated with various central nervous system (CNS) diseases such as postoperative cognitive dysfunction (POCD), is primarily mediated by the disruption of biological signals in microglia. However, the effective treatment of CNS diseases remains an ongoing challenge as biological signals show limited microglia-targeting effect. In this study, taking advantage of the highly expressed lipoprotein receptor-related protein-1 (LRP1) on the microglia, a nanobiosignal delivery system modified by LRP1 high-affinity peptide ligand RAP12 (RAP: receptor-associated protein) was constructed to specifically regulate neuroinflammation via targeting microglia. The uptake of the RAP12 modified-nanobiosignaler by microglia increased significantly, indicating its microglia-targeting ability. Both in vitro/vivo studies proved that the “nanobiosignaler” significantly reduced the secretion of pro-inflammatory cytokines, induced specific M2 (anti-inflammatory type) microglia differentiation, and remarkably alleviated cognitive function impairment in the mice model when compared with unmodified groups. It was indicated that the “nanobiosignaler” could target microglia to deliver the biological signal and inhibit the excessive activation of microglia. Overall, the cell-targeted biological signal transmission system inspired by “nanobiosignaler” has broad application prospects in the future.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-022-5143-3