Loading…
Stochastic simulation of quorum sensing in Vibrio fischeri based on P System
Inspiration from nature and especially from biology is up today a multidisciplinary challenge where biologists aim to exploit ‘competences’ of a computer to understand phenomena of life through simulations and where artificial intelligence aims to develop new computational approaches inherent from n...
Saved in:
Published in: | Evolving systems 2019-06, Vol.10 (2), p.167-177 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inspiration from nature and especially from biology is up today a multidisciplinary challenge where biologists aim to exploit ‘competences’ of a computer to understand phenomena of life through simulations and where artificial intelligence aims to develop new computational approaches inherent from natural processes. Situated in the border of
evolutionary systems
and
bioinformatics
, the computational model of P system is an evolved algorithm based upon the structure and evolution rules of biological living cells to outperform some conventional systems. Thus, this paper presents a version of multi-compartmental Gillespie algorithm used to simulate the parallelism of chemical reactions in the quorum sensing phenomena of a bacteria colony. This model is used to distribute the computation over the membranes. The aim is to achieve scalability and get mapping the communication between bacteria and their environment. The obtained results prove that this process adds an important value to the multi-compartmental Gillespie algorithm, which uses the organizational aspect of the membrane structure. They also prove that the independent parallel evolution of the membranes is basic to improve legitimacy of the strategy which leads to a reliable simulation and gives a more realistic representation of the system’s evolution. |
---|---|
ISSN: | 1868-6478 1868-6486 |
DOI: | 10.1007/s12530-018-9226-z |