Loading…

Optimization of cutting conditions for surface roughness in CNC end milling

The aim of this research is to develop an integrated study of surface roughness to model and optimize the cutting parameters when end milling of 6061 aluminum alloy with HSS and carbide tools under dry and wet conditions. A multiple regression analysis using analysis of variance is conducted to dete...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing 2011-06, Vol.12 (3), p.383-391
Main Authors: Raju, Kantheti Venkata Murali Krishnam, Janardhana, Gink Ranga, Kumar, Podaralla Nanda, Rao, Vanapalli Durga Prasada
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3
cites cdi_FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3
container_end_page 391
container_issue 3
container_start_page 383
container_title International journal of precision engineering and manufacturing
container_volume 12
creator Raju, Kantheti Venkata Murali Krishnam
Janardhana, Gink Ranga
Kumar, Podaralla Nanda
Rao, Vanapalli Durga Prasada
description The aim of this research is to develop an integrated study of surface roughness to model and optimize the cutting parameters when end milling of 6061 aluminum alloy with HSS and carbide tools under dry and wet conditions. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental measurements and to show the effect of cutting parameters on the surface roughness. The second-order mathematical models in terms of machining parameters have been developed for each of these conditions on the basis of experimental results. Genetic algorithm (GA) supported with the regression equation is utilized to determine the best combinations of cutting parameters providing roughness to the lower surface through optimization process. The value obtained from GA is compared with that of experimental value and found reliable. It is observed from the results that the developed study can be applied to other machining processes operating under different machining conditions.
doi_str_mv 10.1007/s12541-011-0050-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12541_011_0050_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12541_011_0050_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpB7DzDxg8fiZLFPESFd3A2kocpxgldmUnC_h6XJV1F6O5Gs0ZjQ5Ct0DvgFJ9n4FJAYRCKSop0RdoxUoiQlF2WTLjgmhZ82u0ydl3lANTXFZqhd52h9lP_redfQw4Dtgu8-zDHtsYen8cZjzEhPOShtY6nOKy_wouZ-wDbt4b7EKPJz-OhblBV0M7Zrf572v0-fT40byQ7e75tXnYEssZzERQxkAzq13VgRQ9iKqvq47aWgxK8lq3vNWKil6LTnWUARdOi14pXUtlwfI1gtNdm2LOyQ3mkPzUph8D1ByFmJMQU4SYoxCjC8NOTC67Ye-S-Y5LCuXNM9Af28piGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of cutting conditions for surface roughness in CNC end milling</title><source>Springer Nature</source><creator>Raju, Kantheti Venkata Murali Krishnam ; Janardhana, Gink Ranga ; Kumar, Podaralla Nanda ; Rao, Vanapalli Durga Prasada</creator><creatorcontrib>Raju, Kantheti Venkata Murali Krishnam ; Janardhana, Gink Ranga ; Kumar, Podaralla Nanda ; Rao, Vanapalli Durga Prasada</creatorcontrib><description>The aim of this research is to develop an integrated study of surface roughness to model and optimize the cutting parameters when end milling of 6061 aluminum alloy with HSS and carbide tools under dry and wet conditions. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental measurements and to show the effect of cutting parameters on the surface roughness. The second-order mathematical models in terms of machining parameters have been developed for each of these conditions on the basis of experimental results. Genetic algorithm (GA) supported with the regression equation is utilized to determine the best combinations of cutting parameters providing roughness to the lower surface through optimization process. The value obtained from GA is compared with that of experimental value and found reliable. It is observed from the results that the developed study can be applied to other machining processes operating under different machining conditions.</description><identifier>ISSN: 2234-7593</identifier><identifier>EISSN: 2005-4602</identifier><identifier>DOI: 10.1007/s12541-011-0050-7</identifier><language>eng</language><publisher>Seoul: The Korean Society for Applied Biological Chemistry</publisher><subject>Engineering ; Industrial and Production Engineering ; Materials Science</subject><ispartof>International journal of precision engineering and manufacturing, 2011-06, Vol.12 (3), p.383-391</ispartof><rights>Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3</citedby><cites>FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Raju, Kantheti Venkata Murali Krishnam</creatorcontrib><creatorcontrib>Janardhana, Gink Ranga</creatorcontrib><creatorcontrib>Kumar, Podaralla Nanda</creatorcontrib><creatorcontrib>Rao, Vanapalli Durga Prasada</creatorcontrib><title>Optimization of cutting conditions for surface roughness in CNC end milling</title><title>International journal of precision engineering and manufacturing</title><addtitle>Int. J. Precis. Eng. Manuf</addtitle><description>The aim of this research is to develop an integrated study of surface roughness to model and optimize the cutting parameters when end milling of 6061 aluminum alloy with HSS and carbide tools under dry and wet conditions. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental measurements and to show the effect of cutting parameters on the surface roughness. The second-order mathematical models in terms of machining parameters have been developed for each of these conditions on the basis of experimental results. Genetic algorithm (GA) supported with the regression equation is utilized to determine the best combinations of cutting parameters providing roughness to the lower surface through optimization process. The value obtained from GA is compared with that of experimental value and found reliable. It is observed from the results that the developed study can be applied to other machining processes operating under different machining conditions.</description><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Materials Science</subject><issn>2234-7593</issn><issn>2005-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpB7DzDxg8fiZLFPESFd3A2kocpxgldmUnC_h6XJV1F6O5Gs0ZjQ5Ct0DvgFJ9n4FJAYRCKSop0RdoxUoiQlF2WTLjgmhZ82u0ydl3lANTXFZqhd52h9lP_redfQw4Dtgu8-zDHtsYen8cZjzEhPOShtY6nOKy_wouZ-wDbt4b7EKPJz-OhblBV0M7Zrf572v0-fT40byQ7e75tXnYEssZzERQxkAzq13VgRQ9iKqvq47aWgxK8lq3vNWKil6LTnWUARdOi14pXUtlwfI1gtNdm2LOyQ3mkPzUph8D1ByFmJMQU4SYoxCjC8NOTC67Ye-S-Y5LCuXNM9Af28piGg</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Raju, Kantheti Venkata Murali Krishnam</creator><creator>Janardhana, Gink Ranga</creator><creator>Kumar, Podaralla Nanda</creator><creator>Rao, Vanapalli Durga Prasada</creator><general>The Korean Society for Applied Biological Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110601</creationdate><title>Optimization of cutting conditions for surface roughness in CNC end milling</title><author>Raju, Kantheti Venkata Murali Krishnam ; Janardhana, Gink Ranga ; Kumar, Podaralla Nanda ; Rao, Vanapalli Durga Prasada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, Kantheti Venkata Murali Krishnam</creatorcontrib><creatorcontrib>Janardhana, Gink Ranga</creatorcontrib><creatorcontrib>Kumar, Podaralla Nanda</creatorcontrib><creatorcontrib>Rao, Vanapalli Durga Prasada</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of precision engineering and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, Kantheti Venkata Murali Krishnam</au><au>Janardhana, Gink Ranga</au><au>Kumar, Podaralla Nanda</au><au>Rao, Vanapalli Durga Prasada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of cutting conditions for surface roughness in CNC end milling</atitle><jtitle>International journal of precision engineering and manufacturing</jtitle><stitle>Int. J. Precis. Eng. Manuf</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>12</volume><issue>3</issue><spage>383</spage><epage>391</epage><pages>383-391</pages><issn>2234-7593</issn><eissn>2005-4602</eissn><abstract>The aim of this research is to develop an integrated study of surface roughness to model and optimize the cutting parameters when end milling of 6061 aluminum alloy with HSS and carbide tools under dry and wet conditions. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental measurements and to show the effect of cutting parameters on the surface roughness. The second-order mathematical models in terms of machining parameters have been developed for each of these conditions on the basis of experimental results. Genetic algorithm (GA) supported with the regression equation is utilized to determine the best combinations of cutting parameters providing roughness to the lower surface through optimization process. The value obtained from GA is compared with that of experimental value and found reliable. It is observed from the results that the developed study can be applied to other machining processes operating under different machining conditions.</abstract><cop>Seoul</cop><pub>The Korean Society for Applied Biological Chemistry</pub><doi>10.1007/s12541-011-0050-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2234-7593
ispartof International journal of precision engineering and manufacturing, 2011-06, Vol.12 (3), p.383-391
issn 2234-7593
2005-4602
language eng
recordid cdi_crossref_primary_10_1007_s12541_011_0050_7
source Springer Nature
subjects Engineering
Industrial and Production Engineering
Materials Science
title Optimization of cutting conditions for surface roughness in CNC end milling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20cutting%20conditions%20for%20surface%20roughness%20in%20CNC%20end%20milling&rft.jtitle=International%20journal%20of%20precision%20engineering%20and%20manufacturing&rft.au=Raju,%20Kantheti%20Venkata%20Murali%20Krishnam&rft.date=2011-06-01&rft.volume=12&rft.issue=3&rft.spage=383&rft.epage=391&rft.pages=383-391&rft.issn=2234-7593&rft.eissn=2005-4602&rft_id=info:doi/10.1007/s12541-011-0050-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s12541_011_0050_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-4022172c7e8b154d148d98b0c94f65397a3a7604d74b6b02134e74d667956c1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true