Loading…

Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm

This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimiza...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing 2013-09, Vol.14 (9), p.1583-1589
Main Authors: Gu, Dong-Sik, Kim, Young-Chan, Lee, Jong-Myeong, Choi, Byeong-Keun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3
cites cdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3
container_end_page 1589
container_issue 9
container_start_page 1583
container_title International journal of precision engineering and manufacturing
container_volume 14
creator Gu, Dong-Sik
Kim, Young-Chan
Lee, Jong-Myeong
Choi, Byeong-Keun
description This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.
doi_str_mv 10.1007/s12541-013-0214-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12541_013_0214_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12541_013_0214_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoSHNB3SnH1CrhyXbyxL6gkA26VqMpbGj4heSvcjf1yZZdzMzi3sG7iHkWfAXwXn-moTUmWBcKMalyFhxRzaSc80yw-X9ckuVsVyX6pHsUgoVV0IapQuzIe44TqGbO-oxhaanQ01T6MYWaRymIdJ0SRN2NM3jOMQJPa0u9HeYYw8trRBi6Bs6p3Vif4beLYkGe5yCo9A2QwzTuXsiDzW0CXe3vSU_H--n_Rc7HD-_928H5pQUE6vzEvMiAw-5KSpArj1qrUpeOg-mlpkxIJ0rawBE8LzUVaGEUOAzUzjv1ZaI618Xh5Qi1naMoYN4sYLbVZS9irKLKLuKssXCyCuTxrULRntrl_6B_gCAqW5Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</title><source>Springer Nature</source><creator>Gu, Dong-Sik ; Kim, Young-Chan ; Lee, Jong-Myeong ; Choi, Byeong-Keun</creator><creatorcontrib>Gu, Dong-Sik ; Kim, Young-Chan ; Lee, Jong-Myeong ; Choi, Byeong-Keun</creatorcontrib><description>This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.</description><identifier>ISSN: 2234-7593</identifier><identifier>EISSN: 2005-4602</identifier><identifier>DOI: 10.1007/s12541-013-0214-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Industrial and Production Engineering ; Materials Science</subject><ispartof>International journal of precision engineering and manufacturing, 2013-09, Vol.14 (9), p.1583-1589</ispartof><rights>Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</citedby><cites>FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gu, Dong-Sik</creatorcontrib><creatorcontrib>Kim, Young-Chan</creatorcontrib><creatorcontrib>Lee, Jong-Myeong</creatorcontrib><creatorcontrib>Choi, Byeong-Keun</creatorcontrib><title>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</title><title>International journal of precision engineering and manufacturing</title><addtitle>Int. J. Precis. Eng. Manuf</addtitle><description>This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.</description><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Materials Science</subject><issn>2234-7593</issn><issn>2005-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoSHNB3SnH1CrhyXbyxL6gkA26VqMpbGj4heSvcjf1yZZdzMzi3sG7iHkWfAXwXn-moTUmWBcKMalyFhxRzaSc80yw-X9ckuVsVyX6pHsUgoVV0IapQuzIe44TqGbO-oxhaanQ01T6MYWaRymIdJ0SRN2NM3jOMQJPa0u9HeYYw8trRBi6Bs6p3Vif4beLYkGe5yCo9A2QwzTuXsiDzW0CXe3vSU_H--n_Rc7HD-_928H5pQUE6vzEvMiAw-5KSpArj1qrUpeOg-mlpkxIJ0rawBE8LzUVaGEUOAzUzjv1ZaI618Xh5Qi1naMoYN4sYLbVZS9irKLKLuKssXCyCuTxrULRntrl_6B_gCAqW5Z</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Gu, Dong-Sik</creator><creator>Kim, Young-Chan</creator><creator>Lee, Jong-Myeong</creator><creator>Choi, Byeong-Keun</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</title><author>Gu, Dong-Sik ; Kim, Young-Chan ; Lee, Jong-Myeong ; Choi, Byeong-Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Dong-Sik</creatorcontrib><creatorcontrib>Kim, Young-Chan</creatorcontrib><creatorcontrib>Lee, Jong-Myeong</creatorcontrib><creatorcontrib>Choi, Byeong-Keun</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of precision engineering and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Dong-Sik</au><au>Kim, Young-Chan</au><au>Lee, Jong-Myeong</au><au>Choi, Byeong-Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</atitle><jtitle>International journal of precision engineering and manufacturing</jtitle><stitle>Int. J. Precis. Eng. Manuf</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>14</volume><issue>9</issue><spage>1583</spage><epage>1589</epage><pages>1583-1589</pages><issn>2234-7593</issn><eissn>2005-4602</eissn><abstract>This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12541-013-0214-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2234-7593
ispartof International journal of precision engineering and manufacturing, 2013-09, Vol.14 (9), p.1583-1589
issn 2234-7593
2005-4602
language eng
recordid cdi_crossref_primary_10_1007_s12541_013_0214_8
source Springer Nature
subjects Engineering
Industrial and Production Engineering
Materials Science
title Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20design%20of%20simple%20rotor%20system%20supported%20by%20journal%20bearing%20using%20enhanced%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20precision%20engineering%20and%20manufacturing&rft.au=Gu,%20Dong-Sik&rft.date=2013-09-01&rft.volume=14&rft.issue=9&rft.spage=1583&rft.epage=1589&rft.pages=1583-1589&rft.issn=2234-7593&rft.eissn=2005-4602&rft_id=info:doi/10.1007/s12541-013-0214-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s12541_013_0214_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true