Loading…
Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm
This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimiza...
Saved in:
Published in: | International journal of precision engineering and manufacturing 2013-09, Vol.14 (9), p.1583-1589 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3 |
container_end_page | 1589 |
container_issue | 9 |
container_start_page | 1583 |
container_title | International journal of precision engineering and manufacturing |
container_volume | 14 |
creator | Gu, Dong-Sik Kim, Young-Chan Lee, Jong-Myeong Choi, Byeong-Keun |
description | This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range. |
doi_str_mv | 10.1007/s12541-013-0214-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12541_013_0214_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12541_013_0214_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoSHNB3SnH1CrhyXbyxL6gkA26VqMpbGj4heSvcjf1yZZdzMzi3sG7iHkWfAXwXn-moTUmWBcKMalyFhxRzaSc80yw-X9ckuVsVyX6pHsUgoVV0IapQuzIe44TqGbO-oxhaanQ01T6MYWaRymIdJ0SRN2NM3jOMQJPa0u9HeYYw8trRBi6Bs6p3Vif4beLYkGe5yCo9A2QwzTuXsiDzW0CXe3vSU_H--n_Rc7HD-_928H5pQUE6vzEvMiAw-5KSpArj1qrUpeOg-mlpkxIJ0rawBE8LzUVaGEUOAzUzjv1ZaI618Xh5Qi1naMoYN4sYLbVZS9irKLKLuKssXCyCuTxrULRntrl_6B_gCAqW5Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</title><source>Springer Nature</source><creator>Gu, Dong-Sik ; Kim, Young-Chan ; Lee, Jong-Myeong ; Choi, Byeong-Keun</creator><creatorcontrib>Gu, Dong-Sik ; Kim, Young-Chan ; Lee, Jong-Myeong ; Choi, Byeong-Keun</creatorcontrib><description>This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.</description><identifier>ISSN: 2234-7593</identifier><identifier>EISSN: 2005-4602</identifier><identifier>DOI: 10.1007/s12541-013-0214-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Industrial and Production Engineering ; Materials Science</subject><ispartof>International journal of precision engineering and manufacturing, 2013-09, Vol.14 (9), p.1583-1589</ispartof><rights>Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</citedby><cites>FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gu, Dong-Sik</creatorcontrib><creatorcontrib>Kim, Young-Chan</creatorcontrib><creatorcontrib>Lee, Jong-Myeong</creatorcontrib><creatorcontrib>Choi, Byeong-Keun</creatorcontrib><title>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</title><title>International journal of precision engineering and manufacturing</title><addtitle>Int. J. Precis. Eng. Manuf</addtitle><description>This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.</description><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Materials Science</subject><issn>2234-7593</issn><issn>2005-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoSHNB3SnH1CrhyXbyxL6gkA26VqMpbGj4heSvcjf1yZZdzMzi3sG7iHkWfAXwXn-moTUmWBcKMalyFhxRzaSc80yw-X9ckuVsVyX6pHsUgoVV0IapQuzIe44TqGbO-oxhaanQ01T6MYWaRymIdJ0SRN2NM3jOMQJPa0u9HeYYw8trRBi6Bs6p3Vif4beLYkGe5yCo9A2QwzTuXsiDzW0CXe3vSU_H--n_Rc7HD-_928H5pQUE6vzEvMiAw-5KSpArj1qrUpeOg-mlpkxIJ0rawBE8LzUVaGEUOAzUzjv1ZaI618Xh5Qi1naMoYN4sYLbVZS9irKLKLuKssXCyCuTxrULRntrl_6B_gCAqW5Z</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Gu, Dong-Sik</creator><creator>Kim, Young-Chan</creator><creator>Lee, Jong-Myeong</creator><creator>Choi, Byeong-Keun</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</title><author>Gu, Dong-Sik ; Kim, Young-Chan ; Lee, Jong-Myeong ; Choi, Byeong-Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Dong-Sik</creatorcontrib><creatorcontrib>Kim, Young-Chan</creatorcontrib><creatorcontrib>Lee, Jong-Myeong</creatorcontrib><creatorcontrib>Choi, Byeong-Keun</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of precision engineering and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Dong-Sik</au><au>Kim, Young-Chan</au><au>Lee, Jong-Myeong</au><au>Choi, Byeong-Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm</atitle><jtitle>International journal of precision engineering and manufacturing</jtitle><stitle>Int. J. Precis. Eng. Manuf</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>14</volume><issue>9</issue><spage>1583</spage><epage>1589</epage><pages>1583-1589</pages><issn>2234-7593</issn><eissn>2005-4602</eissn><abstract>This paper presents a combined algorithm for optimum design of flexible rotor system supported by journal bearing. The proposed algorithm (Enhanced Genetic Algorithm, EGA) is the synthesis of a modified genetic algorithm and simplex method. A genetic algorithm (GA) is well known as a useful optimization technique for complex, nonlinear, and multi-optimization problems. The modified GA gives the candidate solutions in global search and then the solutions will be treated as initial values in the local search by the simplex method. The EGA is not only faster than the standard genetic algorithm, but also provides a more accurate solution. In addition, this algorithm can find both the global and the local optimum solutions at the same time. Through two standard test functions, the advantages of the proposed hybrid algorithm has been confirmed. Finally, to optimize a simple rotor system supported by journal bearing, EGA is applied. The radial clearance, length to diameter ratio and average viscosity of the journal bearing are chosen as the design parameters. The objective function is the minimization of a maximum quality factor of a flexible rotor system in the operating speed range.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12541-013-0214-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2234-7593 |
ispartof | International journal of precision engineering and manufacturing, 2013-09, Vol.14 (9), p.1583-1589 |
issn | 2234-7593 2005-4602 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s12541_013_0214_8 |
source | Springer Nature |
subjects | Engineering Industrial and Production Engineering Materials Science |
title | Optimum design of simple rotor system supported by journal bearing using enhanced genetic algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20design%20of%20simple%20rotor%20system%20supported%20by%20journal%20bearing%20using%20enhanced%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20precision%20engineering%20and%20manufacturing&rft.au=Gu,%20Dong-Sik&rft.date=2013-09-01&rft.volume=14&rft.issue=9&rft.spage=1583&rft.epage=1589&rft.pages=1583-1589&rft.issn=2234-7593&rft.eissn=2005-4602&rft_id=info:doi/10.1007/s12541-013-0214-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s12541_013_0214_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-f79e784ada768bae05de553909cda6f2466a2cc9faaeead095b83113ad468cdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |