Loading…
Optimization of the hot workability for an extrude AZ80 Mg alloy using the processing map and Kriging meta-model
Mg alloy has a hexagonal close-packed(HCP) lattice crystal structure, which has fewer slip systems than other structures, and plastic deformation is difficult to achieve at room temperature. To improve its workability, the non-basal plane slip must be activated by increasing the deformation temperat...
Saved in:
Published in: | International journal of precision engineering and manufacturing 2015-06, Vol.16 (6), p.1149-1156 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mg alloy has a hexagonal close-packed(HCP) lattice crystal structure, which has fewer slip systems than other structures, and plastic deformation is difficult to achieve at room temperature. To improve its workability, the non-basal plane slip must be activated by increasing the deformation temperature. In this study, the hot deformation behavior of the AZ80 Mg alloy was examined within the temperature range of 250–400°C and the strain rate range of 0.001–10/s, based on the dynamic materials model. The hot deformation characteristic value was determined using the dynamic materials model (DMM), and was approximated using Kriging meta-model. Based on the results, deformation processing maps were derived, and the entire strains were examined to present the processing maps considering the strain during forming. In addition, the processing maps were established considering the hardness after forming, and the process window was presented considering both the formability and the strength of the parts. |
---|---|
ISSN: | 2234-7593 2005-4602 |
DOI: | 10.1007/s12541-015-0149-3 |