Loading…

The fossil record of the Neogene Carnivore Mammals from Spain

Carnivore mammals (Carnivora, Mammalia) constitute a significant component of the Spanish Neogene faunas, not so much due to their fossil abundance, which is generally low, but rather because of their high degree of taxonomic diversity. We assessed their evolutionary dynamics from the fossil record...

Full description

Saved in:
Bibliographic Details
Published in:Palaeobiodiversity and palaeoenvironments 2015-09, Vol.95 (3), p.373-386
Main Authors: Morales, Jorge, Cantalapiedra, Juan L., Valenciano, Alberto, Hontecillas, Daniel, Fraile, Susana, García Yelo, Blanca A., Montoya, Plinio, Abella, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carnivore mammals (Carnivora, Mammalia) constitute a significant component of the Spanish Neogene faunas, not so much due to their fossil abundance, which is generally low, but rather because of their high degree of taxonomic diversity. We assessed their evolutionary dynamics from the fossil record of Iberian carnivores using per-taxon rates of origination, extinctions and turnover combined with a recent approach for removing the sampling signal from diversity curves. Our analysis interval covers most of the Neogene and the early Pleistocene (MN 2 to MN 17), spanning from around 21.6 to 1.8 Ma. We identified six carnivore associations by applying factor analysis to our data. The diversification pattern shows four origination episodes: MN4, MN7/8, MN12 and MN14. We also identified four extinction episodes. The first two are coincident with the onset of the MN 4 and MN7/8 faunas. The last two extinction episodes take place during MN9, coinciding with the Mid Vallesian Crisis (MVC), and MN13, co-occurring with the Messinian Salinity Crisis (MSC). Two major turnover pulses are recognised during MN4 and MN14, the turnover rate remaining moderately high between MN6 and MN13. We suggest that the pattern observed might be primarily triggered by the biogeographic and climatic shifts that took place during the Neogene.
ISSN:1867-1594
1867-1608
DOI:10.1007/s12549-015-0206-z