Loading…
Brucine-Induced Neurotoxicity by Targeting Caspase 3: Involvement of PPARγ/NF-κB/Apoptosis Signaling Pathway
Brucine, a weak alkaline indole alkaloid, is one of the main bioactive and toxic constituents of Strychnos nux-vomica L., which exerts multiple pharmacological activities, such as anti-tumor, anti-inflammatory, and analgesic effect. However, its potential toxic effects limited its clinical applicati...
Saved in:
Published in: | Neurotoxicity research 2022-12, Vol.40 (6), p.2117-2131 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brucine, a weak alkaline indole alkaloid, is one of the main bioactive and toxic constituents of
Strychnos nux-vomica
L., which exerts multiple pharmacological activities, such as anti-tumor, anti-inflammatory, and analgesic effect. However, its potential toxic effects limited its clinical application, especially central nervous system toxicity. The present study was designed to investigate the neurotoxicity and mechanism of brucine. Our results showed that brucine significantly induced Neuro-2a cells and primary astrocyte death, as evidenced by MTT assay and LDH release. Moreover, transcriptome analysis indicated that PPAR/NF-κB and apoptosis signaling pathways were involved in the brucine-induced cytotoxicity in Neuro-2a cells. Subsequently, in fact, brucine evidently inhibited PPARγ and promoted phosphorylation of NF-κB. Furthermore, PPARγ inhibitor aggravated the neurotoxicity, while NF-κB inhibitor substantially reversed brucine-induced neurotoxicity. Moreover, brucine also significantly induced neuronal apoptosis and triggered increase in ratio of Bax/Bcl-2 and level of cleaved caspase 3, as well as its activity as evidenced by TUNEL staining and Western blot. Furthermore, molecular docking analysis predicted that brucine directly bound to caspase 3. Intriguingly, a caspase 3 inhibitor (Z-DEVE-FMK) largely abolished the neurotoxicity of brucine. Our results reveal that brucine-induced neurotoxicity via activation of PPARγ/NF-κB/caspase 3-dependent apoptosis pathway. These findings will provide a novel strategy against brucine-induced neurotoxicity. |
---|---|
ISSN: | 1029-8428 1476-3524 |
DOI: | 10.1007/s12640-022-00581-9 |