Loading…

Modeling of Wheat Straw Torrefaction as a Preliminary Tool for Process Design

Torrefaction is considered as a kind of mild pyrolysis that is carried out under inert atmosphere (usually nitrogen) conditions. During this process, the moisture of the initial fuel and a portion of its volatiles are removed from the biomass particles towards the inert atmosphere. The resulted torr...

Full description

Saved in:
Bibliographic Details
Published in:Waste and biomass valorization 2013-09, Vol.4 (3), p.409-420
Main Authors: Nikolopoulos, N., Isemin, R., Atsonios, K., Kourkoumpas, D., Kuzmin, S., Mikhalev, A., Nikolopoulos, A., Agraniotis, M., Grammelis, P., Kakaras, Em
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Torrefaction is considered as a kind of mild pyrolysis that is carried out under inert atmosphere (usually nitrogen) conditions. During this process, the moisture of the initial fuel and a portion of its volatiles are removed from the biomass particles towards the inert atmosphere. The resulted torrefied solid biomass has high energy density, durability and less hydrophilic character. The most beneficial result of torrefaction process is that biomass feedstock logistics cost can be reduced, as less tones of biomass are required for a given amount of energy input. The development of a process model examining basic parameters as reaction temperature and residence time can provide useful information, which can be used for the more efficient design of a torrefaction reactor. This study presents such a process model for a straw torrefaction pilot plant. This model is based on the thermodynamic calculation of a single and/or a two batch reactor, built on the commercial software ASPEN Plus. The calculation of required flow rates of inert gas, cooling medium for a specific biomass feedstock value, is based on relevant results found in literature.
ISSN:1877-2641
1877-265X
DOI:10.1007/s12649-013-9198-y