Loading…
The structure of the high-pressure gas jet from a spark plug fuel injector for direct fuel injection
A spark plug fuel injector (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection (Mohamad in Development of a spark plug fuel injector for direct injection of methane...
Saved in:
Published in: | Journal of visualization 2010-05, Vol.13 (2), p.121-131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A spark plug fuel injector (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection (Mohamad in Development of a spark plug fuel injector for direct injection of methane in spark ignition engine. PhD thesis, Cranfield University,
2006
). A direct fuel injector is combined with a spark plug using specially fabricated bracket connected to a fuel pipe and a fuel path running along the periphery of a spark plug body to deliver the injected fuel to the combustion chamber. The injection nozzle of SPFI is significantly bigger than normal direct fuel injector nozzles. Therefore, it is important to understand the effect of such a configuration on the injection process and subsequently the air–fuel mixing behaviour inside the combustion chamber. The flow was visualized using the planar laser-induced fluorescent technique. For safety reasons, nitrogen was used as fuel substitute. Nitrogen at 50, 60 and 80 bar pressure was seeded with acetone as a flow tracer and injected into a bomb containing pressurised nitrogen. Bomb pressure was varied to simulate the pressure inside combustion cylinder during the compression stroke where actual injections in engine experiments will take place. The shape and depth of tip penetration of the gas jet were measured. Results show that the gas jet follows the behaviour suggested by vortex ball model (Turner in Mechanics 13:356–369,
1962
). The cone angle and the maximum jet width of the fully developed gas jets from the SPFI injection are 23° and 25 mm, respectively regardless of the injection pressures. The penetration lengths of the fully developed jets are between 90 and 100 mm at 8–14 ms after the start of injection, depending on the bomb and injection pressure. Jet penetration is directly proportional to the injection pressure but inversely proportional to the cylinder or bomb pressure. The penetration lengths indicate that sufficient distance should be travelled by the gas jet for satisfactory air–fuel mixing in the engine.
Graphical Abstract |
---|---|
ISSN: | 1343-8875 1875-8975 |
DOI: | 10.1007/s12650-009-0017-2 |