Loading…
Single camera time-resolved 3D tomographic reconstruction of a pulsed gas jet
Experimental characterization of micro-jets is challenging because of the small dimensions of the micro-nozzle. In this study, we propose a new technique to visualize the instantaneous 3D structure of a pulsed gas micro-jet. Using phase-averaging of Schlieren visualizations obtained with a high-spee...
Saved in:
Published in: | Journal of visualization 2013-11, Vol.16 (4), p.263-274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental characterization of micro-jets is challenging because of the small dimensions of the micro-nozzle. In this study, we propose a new technique to visualize the instantaneous 3D structure of a pulsed gas micro-jet. Using phase-averaging of Schlieren visualizations obtained with a high-speed camera and 3D reconstruction through a filtered back projection algorithm, it is possible to follow the high-speed dynamics of the pulsed jet. The experimental technique is illustrated by a 3D reconstruction of a pulsed helium micro-jet. The technique is simple yet very useful. To our knowledge, it is the only experimental method to analyze the instantaneous 3D structure and high frequency dynamics of pulsed micro-jets.
Graphical Abstract |
---|---|
ISSN: | 1343-8875 1875-8975 |
DOI: | 10.1007/s12650-013-0176-z |