Loading…

Gaussian-process-based robot learning from demonstration

Learning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing 2023-02
Main Authors: Arduengo, Miguel, Colomé, Adrià, Lobo-Prat, Joan, Sentis, Luis, Torras, Carme
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523
cites cdi_FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523
container_end_page
container_issue
container_start_page
container_title Journal of ambient intelligence and humanized computing
container_volume
creator Arduengo, Miguel
Colomé, Adrià
Lobo-Prat, Joan
Sentis, Luis
Torras, Carme
description Learning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting the potential that Gaussian process (GP) models offer, we unify in a single, entirely GP-based framework, the main features required for a state-of-the-art LfD approach. We address how GP can be used to effectively learn a policy from trajectories in task space. To achieve an effective generalization across demonstrations, we propose the novel Task Completion Index (TCI) for temporal alignment of task trajectories. Also, our probabilistic GP-based representation allows encoding variability throughout the different phases of the task. Finally, we present a method to efficiently adapt the policy to fulfill new requirements and modulate the robot behavior as a function of task variability. This approach has been successfully tested in a real-world application, namely teaching a TIAGo robot to open different types of doors.
doi_str_mv 10.1007/s12652-023-04551-7
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s12652_023_04551_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s12652_023_04551_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523</originalsourceid><addsrcrecordid>eNo9z81KAzEUBeAgCpbaF3A1LxC9NzeZzCylaBUK3eg6ZPIjI-2k5I4L395qxbM5Z3XgE-IW4Q4B7D2jao2SoEiCNgalvRAL7NpOGtTm8n-TvRYr5g84hXpCxIXoNv6TefSTPNYSErMcPKfY1DKUudknX6dxem9yLYcmpkOZeK5-Hst0I66y33Na_fVSvD09vq6f5Xa3eVk_bGVQ0FqJ1HvMQ_AQQ-pRd31E3XZDjlYrDBCN0mD7HIxuByKCHE0wsctESiejaCnU-TfUwlxTdsc6Hnz9cgjuh-_OfHfiu1--s_QNAc9NKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gaussian-process-based robot learning from demonstration</title><source>Springer Nature</source><creator>Arduengo, Miguel ; Colomé, Adrià ; Lobo-Prat, Joan ; Sentis, Luis ; Torras, Carme</creator><creatorcontrib>Arduengo, Miguel ; Colomé, Adrià ; Lobo-Prat, Joan ; Sentis, Luis ; Torras, Carme</creatorcontrib><description>Learning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting the potential that Gaussian process (GP) models offer, we unify in a single, entirely GP-based framework, the main features required for a state-of-the-art LfD approach. We address how GP can be used to effectively learn a policy from trajectories in task space. To achieve an effective generalization across demonstrations, we propose the novel Task Completion Index (TCI) for temporal alignment of task trajectories. Also, our probabilistic GP-based representation allows encoding variability throughout the different phases of the task. Finally, we present a method to efficiently adapt the policy to fulfill new requirements and modulate the robot behavior as a function of task variability. This approach has been successfully tested in a real-world application, namely teaching a TIAGo robot to open different types of doors.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-023-04551-7</identifier><language>eng</language><ispartof>Journal of ambient intelligence and humanized computing, 2023-02</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523</citedby><cites>FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523</cites><orcidid>0000-0001-7501-3947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arduengo, Miguel</creatorcontrib><creatorcontrib>Colomé, Adrià</creatorcontrib><creatorcontrib>Lobo-Prat, Joan</creatorcontrib><creatorcontrib>Sentis, Luis</creatorcontrib><creatorcontrib>Torras, Carme</creatorcontrib><title>Gaussian-process-based robot learning from demonstration</title><title>Journal of ambient intelligence and humanized computing</title><description>Learning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting the potential that Gaussian process (GP) models offer, we unify in a single, entirely GP-based framework, the main features required for a state-of-the-art LfD approach. We address how GP can be used to effectively learn a policy from trajectories in task space. To achieve an effective generalization across demonstrations, we propose the novel Task Completion Index (TCI) for temporal alignment of task trajectories. Also, our probabilistic GP-based representation allows encoding variability throughout the different phases of the task. Finally, we present a method to efficiently adapt the policy to fulfill new requirements and modulate the robot behavior as a function of task variability. This approach has been successfully tested in a real-world application, namely teaching a TIAGo robot to open different types of doors.</description><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9z81KAzEUBeAgCpbaF3A1LxC9NzeZzCylaBUK3eg6ZPIjI-2k5I4L395qxbM5Z3XgE-IW4Q4B7D2jao2SoEiCNgalvRAL7NpOGtTm8n-TvRYr5g84hXpCxIXoNv6TefSTPNYSErMcPKfY1DKUudknX6dxem9yLYcmpkOZeK5-Hst0I66y33Na_fVSvD09vq6f5Xa3eVk_bGVQ0FqJ1HvMQ_AQQ-pRd31E3XZDjlYrDBCN0mD7HIxuByKCHE0wsctESiejaCnU-TfUwlxTdsc6Hnz9cgjuh-_OfHfiu1--s_QNAc9NKg</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Arduengo, Miguel</creator><creator>Colomé, Adrià</creator><creator>Lobo-Prat, Joan</creator><creator>Sentis, Luis</creator><creator>Torras, Carme</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7501-3947</orcidid></search><sort><creationdate>20230222</creationdate><title>Gaussian-process-based robot learning from demonstration</title><author>Arduengo, Miguel ; Colomé, Adrià ; Lobo-Prat, Joan ; Sentis, Luis ; Torras, Carme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arduengo, Miguel</creatorcontrib><creatorcontrib>Colomé, Adrià</creatorcontrib><creatorcontrib>Lobo-Prat, Joan</creatorcontrib><creatorcontrib>Sentis, Luis</creatorcontrib><creatorcontrib>Torras, Carme</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arduengo, Miguel</au><au>Colomé, Adrià</au><au>Lobo-Prat, Joan</au><au>Sentis, Luis</au><au>Torras, Carme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian-process-based robot learning from demonstration</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><date>2023-02-22</date><risdate>2023</risdate><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Learning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting the potential that Gaussian process (GP) models offer, we unify in a single, entirely GP-based framework, the main features required for a state-of-the-art LfD approach. We address how GP can be used to effectively learn a policy from trajectories in task space. To achieve an effective generalization across demonstrations, we propose the novel Task Completion Index (TCI) for temporal alignment of task trajectories. Also, our probabilistic GP-based representation allows encoding variability throughout the different phases of the task. Finally, we present a method to efficiently adapt the policy to fulfill new requirements and modulate the robot behavior as a function of task variability. This approach has been successfully tested in a real-world application, namely teaching a TIAGo robot to open different types of doors.</abstract><doi>10.1007/s12652-023-04551-7</doi><orcidid>https://orcid.org/0000-0001-7501-3947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2023-02
issn 1868-5137
1868-5145
language eng
recordid cdi_crossref_primary_10_1007_s12652_023_04551_7
source Springer Nature
title Gaussian-process-based robot learning from demonstration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian-process-based%20robot%20learning%20from%20demonstration&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Arduengo,%20Miguel&rft.date=2023-02-22&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-023-04551-7&rft_dat=%3Ccrossref%3E10_1007_s12652_023_04551_7%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2067-139a1fbca0dce91489d1468bfd7421c0d524079fc546b3330fd5c5d8f3324e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true